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Abstract: Indoor localization systems are susceptible to higher errors and do not meet the current
standards of indoor localization. Moreover, the performance of such approaches is limited by device
dependence. The use of Wi-Fi makes the localization process vulnerable to dynamic factors and
energy hungry. A multi-sensor fusion based indoor localization approach is proposed to overcome
these issues. The proposed approach predicts pedestrians’ current location with smartphone sensors
data alone. The proposed approach aims at mitigating the impact of device dependency on the
localization accuracy and lowering the localization error in the magnetic field based localization
systems. We trained a deep learning based convolutional neural network to recognize the indoor
scene which helps to lower the localization error. The recognized scene is used to identify a specific
floor and narrow the search space. The database built of magnetic field patterns helps to lower the
device dependence. A modified K nearest neighbor (mKNN) is presented to calculate the pedestrian’s
current location. The data from pedestrian dead reckoning further refines this location and an
extended Kalman filter is implemented to this end. The performance of the proposed approach is
tested with experiments on Galaxy S8 and LG G6 smartphones. The experimental results demonstrate
that the proposed approach can achieve an accuracy of 1.04 m at 50 percent, regardless of the
smartphone used for localization. The proposed mKNN outperforms K nearest neighbor approach,
and mean, variance, and maximum errors are lower than those of KNN. Moreover, the proposed
approach does not use Wi-Fi for localization and is more energy efficient than those of Wi-Fi based
approaches. Experiments reveal that localization without scene recognition leads to higher errors.

Keywords: convolutional neural networks; scene recognition; indoor localization; deep learning;
magnetic fingerprinting; pedestrian dead reckoning

1. Introduction

The proliferation of modern smartphones and their wide usage in the everyday life makes them a
perfect tool for localization, especially indoors. The high definition camera-equipped phones carry
other sensors as well which can be employed to locate a person. Studies [1–3] indicate that the images
from a smartphone camera can be used for very accurate scene recognition both outdoor, as well as,
indoor. We aim to use deep convolutional neural networks (CNNs) to identify the specific scenes in
the indoor environment to assist the accurate location estimation. Radio signal strength fingerprinting
based indoor localization has been widely utilized as it makes the use of already deployed access
points (AP). However, its performance is severely degraded due to the dynamic factors of shadowing
and multipath effects. On the contrary, geomagnetic field (referred to as “magnetic field” in the rest
of the paper) based indoor localization has emerged as a potential technology which can overcome
the issues related to radio signal based localization. At the same time, it is pervasive, less prone
to changes in indoor infrastructure and does not require additional sensors to perform localization.
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However, infrastructural changes involving ferromagnetic materials like iron, nickle, etc., make
changes to the magnetic field. For example, installing an elevator in a building would cause a huge
magnetic change in the proximity of the elevator [4].

Many works [5–10] focusing on the use of the magnetic data have been presented.
However, they are limited by two factors. First, they work in single floor environments which
limits their wide applicability. Second, they do not meet the accuracy requirements for emergency
response actions as either the localization errors are high in these works or they make the use of radio
signals. The use of radio signals makes them vulnerable, whereas they need the deployed APs to
work properly. This research aims to overcome the limitations of the traditional magnetic field based
localization and devises an approach which works in a multi-floor environment. The images from the
smartphone camera are used to identify indoor scenes.

Scene recognition is one of the challenging but important tasks in computer vision which
has many applications including object detection [11], place identification [12], localization [13,14],
robotics [15], etc. Scene recognition also plays an important role in objects tracking [16–18], computer
engineering tasks including the modeling of resident recognition and monitoring in modern smart
home applications [19,20]. Similarly, research [21] has shown that scene recognition can significantly
improve the health care services by monitoring the patients. Security applications have also been
improved by utilizing scene recognition [22].

Scene recognition is broadly divided into two categories: Outdoor scene recognition and
indoor scene recognition. Research works on outdoor scene recognition involve camera pose
estimation [23], semantic scene classification [24], motion detection [25], satellite image based tasks [26],
localization [27], etc. A variety of sensors have been utilized for indoor scene recognition based
tasks. For example [28,29], used RBG-D camera for object detection and human pose estimation.
Similarly research works [17,30,31] have utilized depth images for human activity recognition and
monitoring the individuals in smart homes. The use of digital camera to extract image features for
classification and segmentation has also been done in [32]. Scene recognition involves the use of
both low-level features including color, Local Binary Pattern (LBP), Scale-invariant Feature Transform
(SIFT), etc., as well as high level features like semantic modeling including bag-of-visual-features,
and attributes and object-based approaches. However, such approaches require a large amount of
manned effort to label the captured images.

Recently, deep CNN have been utilized for a variety of computer vision problems.
The introduction of large datasets like ImageNet and Places paved the way for many object and
scene classification tasks [33]. Many works [34,35] have been presenetd which are devoted to scene
and place recognition using deep learning. Scene recognition using the smartphone camera can
play an important role to refine the indoor localization accuracy. Indoor localization is an important
problem today for a variety of applications including but not limited to geotagging, asset tracking,
augmented reality, and emergency response activities. In addition, the emergence of location-based
services (LBS) necessitated the robustness and preciseness of indoor location. Apart from this, accurate
location information serves as the backbone for LBS. Unlike the global positioning system (GPS)
which serves as the chief outdoor localization technology, there is no standard technology which does
the same for indoor localization. A number of technologies have been proposed so far, including
optical [36], radio, acoustics, and magnetic [37,38] to perform indoor localization, yet, none of them
serves without its demerits.

A major limitation of using the magnetic field data is its device dependence. Ssmartphones of
different brands are embedded with magnetometers designed from various companies. The magnetic
data collected from these smartphones fluctuate significantly depending upon the sensitivity of the
installed magnetometer. Another challenge is to increase the localization accuracy in large places,
as the magnetic intensity can be very similar at multiple locations. Scene recognition can play an
important role to increase the localization accuracy. We aim to use scene recognition for two purposes.
First, it is utilized to identify a specific floor and then the identified scene is employed to narrow down
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the search space in the database. A scene is identified with the help of a deep CNN model. The training
data for each scene is collected using the smartphone rea camera. The identified scene is then used to
assist magnetic field based localization. In the end, the estimated location is refined with the help of
pedestrian dead reckoning (PDR) data. An extended Kalman filter (EKF) is used to fuse the results
from magnetic field localization and PDR data.

The following contributions have been made in this research:

1. A scene recognition model based on deep convolutional neural network is trained for indoor
scene recognition in varying light conditions. The model is used to identify different floors
and refines indoor localization accuracy. Tensorflow 1.12.0 is used to build and train the model.
The accuracy of CNN is compared with support vector machines.

2. An indoor localization approach is presented which utilizes the magnetic data from smartphone
magnetic sensor to localize a pedestrian.

3. Spatial proximity is considered to modify K nearest neighbor (KNN) which removes the distant
neighbors and refines the current location of the pedestrian using the magnetic data.

4. The proposed approach is tested on different smartphones and results are compared against other
localization techniques to evaluate the impact of device dependence.

The rest of the paper is organized in the following manner. Section 2 describes the research works
related to the current study. The proposed approach and its architecture are discussed in Section 3.
Section 4 is about the experiment and performance evaluation. Discussions and conclusion are given
in Sections 5 and 6, respectively.

2. Related Work

A large body of work has been presented which uses dee plearning with using Wi-Fi, magnetic
field, video, and scene recognition to perform indoor localization [1,39,40]. However, we will limit
our discussion to only the most recent and relevant contributions which use deep learning and scene
recognition for localization.

Authors in [41] utilize smartphone camera to locate a person in narrow corridors. The proposed
technique first builds the image database and then matches the user taken images to the database.
Speeded-up Robust Features (SURF) are used for the matching process. Later, the actual location
is calculated with the help of epipolar geometry. The localization results are compared with
wireless local area localization results to evaluate the accuracy of the proposed method. While the
proposed method achieves slightly better accuracy than that of wireless local area results, it lacks
robustness. Time involved in feature extraction from captured images and their matching increases the
latency. Additionally, the localization accuracy can be improved by a fusion of multiple localization
technologies. For example, authors in [42] present an approach called Wi-Vi to improve the localization
accuracy. The proposed approach is based on the use of Wi-Fi and visual images fingerprinting.
First step involves a coarse location estimation using the Wi-Fi fingerprint database. During the second
step, the calculated location is refined with the help of captured images. The images are matched
using ORB which is the combination of oFAST (FAST with orientation), and rBRIEF (rotated BRIEF).
The ORB feature of the captured image is matched against the ORB feature of the fingerprint image
using Hamming distance as the metric of similarity. The approach shows good accuracy and average
localization error is under 1 m at 96%. The major limitation of the approach is that the localization is
performed only at special places called landmarks, which include all places with EXIT signs indoors.
It means that any change in the location of such landmarks requires potential changes in the images
fingerprint databases.

A variety of feature extraction techniques have been proposed as well which are useful for
scene recognition. For example, research [43,44] works with dense depth images from depth camera.
The features of spatial/temporal continuity, constraints of human motion information and centroids
of each activity are used. Research [45] uses eigenfaces vector reduction by texture and shape vector
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phenomenon to remove complexity and density matching score with face boundary fixation extracted
the most likelihood characteristics. Authors in [46] use multiple cameras to find the centroids of the
blobs to calculate the 3D position of cues. Research [47] uses local descriptors for image description
to classify images. The problems of low resolution, occlusion and pose and illumination change are
tackled. Research [48] employs vertex-modeling structure for feature detection.

Authors in [49] devise an approach which utilizes the received signal strength (RSS) of wireless
signals and images to locate a person. Initial estimation of location search space shrinking is achieved
using Wi-Fi signals. Results show that image assisted technique achieves an average error of 1 m at
50 percent. The localization error is increased due to random noise, path loss, multipath interference,
etc., in Wi-Fi techniques. Authors in [50] work to overcome such limitations using the similarity of AP
sets during offline and online phases. Similarly, channel state information (CSI) based fingerprinting
can reduce these effects [51]. Recently, research [52] has used DNNs on RSS of Wi-Fi APs to perform
floor detection and coarse localization. The fingerprinting process involves a substantial amount of
time and one potential alternative to overcome this limitation is crowdsourcing. So, authors in [53]
investigate the feasibility of using crowdsourced image data and develop a system called iMoon.
The proposed system works on 3D models and supports indoor localization from photo-based 3D
models. The reported accuracy is under 4 m for iMoon. Authors in [54] build a system called WAIPO.
The system takes advantage of Wi-Fi and magnetic fingerprints, as well as, the image matching and
people co-occurrence. Initial estimation is made using Wi-Fi fingerprints which is further refined by
image matching and Bluetooth beacons. The final position is then calibrated using the magnetic data.
The accuracy of WAIPO is under 2 m at 98 percent.

The discussed research works which are based on the fusion of technologies use Wi-Fi as a
module in the system. Wi-Fi is either used to make the initial location estimation or refine the
location. Wi-Fi based localization is limited by a number of factors. The scanning for available
APs requires increased time as compared to other smartphone sensors including accelerometer,
gyroscope, and camera, etc. Our experiments reveal that Wi-Fi AP’s scanning requires 3 to 4 s
on average. This raises latency concerns in real time localization systems and reduces the robustness.
Additionally, the received signal strength indicator (RSSI) is prone to error and may indicate different
locations based on similar RSSI. The dynamic factors including the presence of obstacles and people
may cause huge fluctuations in the collected RSSI during the localization process which increases the
error [55,56]. Similarly, Wi-Fi based localization is highly sensitive to the wall separations, and floor
plans and so they are vulnerable to random noise, path loss, multipath interference, shadowing, and so
on [57]. Wi-Fi based systems have a dependence on the location of the installed APs as well and any
change in their position requires the recalibration of the fingerprinting database [58]. One important
point to consider is that approximately 75.39% of total smartphones operate on Android while other
22.35% on iOS operating systems, respectively [59]. The iOS does not provide Wi-Fi information which
implies that the Wi-Fi localization systems cannot work on iOS-based phones.

The limitations of Wi-Fi based localization urged researchers to find alternative technologies which
are less prone to infrastructural changes and provide more accurate location estimations. The magnetic
field has proven a reliable localization technology and has been a potential area of research during the
last decade [8]. For example, authors in [60] present an approach which utilizes magnetic landmarks to
perform indoor localization. Landmarks are the points where local minima/maxima exist in magnetic
samples of eight-connected neighborhoods. The features of ’recurrence plot’, ’trend’ of the peaks,
and peak-to-peak ’length’ from the magnetic data are used to train DNNs. The proposed approach
achieves the best classification accuracy of 80.8% where the accuracy is the correct classification of
magnetic landmarks. The proposed approach does not perform meter level localization, rather it
focuses on specific landmarks classification which in some cases are several meters apart. For example,
the length of magnetic data is set as seven meters to extract features which is a long data. In any
case, the magnetic data collection is done using a smartphone placed on the robot. For pedestrian
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tracking, the results may vary significantly with the proposed approach as the pedestrian’s holding
the smartphone causes slight movements which affect the magnetic data.

Authors in [61] present a system which utilizes the magnetic field data for localization using a
smartphone. The proposed method is based on the smartphone sensors and utilizes the Wi-Fi and
magnetic fingerprinting for localization. The fingerprint collection also involves image capturing
at each step. The captured images are later used for scene recognition which is done using a
Caffe trained CNN model. The smartphone camera is utilized for the initial estimation of the
scene. The initial location helps Wi-Fi and magnetic positioning. A particle filter is implemented
to refine the location from Wi-Fi and magnetic fingerprints. The proposed method achieves a
localization accuracy of 1.32 m at 95%.

The research [61], however, is limited due to many factors. First of all, it involves taking images
at each step, which utilizes a substantial amount of phone battery. Secondly, after the initial scene
recognition, it uses Wi-Fi to improve the localization accuracy. The user is supposed to stop at each
transition point to collect Wi-Fi signals for at least 30 samples. Wi-Fi scanning takes both time and
phone battery which increases latency and consumes more battery. Third, it is mentioned that the
magnetic data is distinguishable in a five-step range. Traveling at a medium velocity of 1 m/s,
a pedestrian can travel 5 m distance which is regarded as a long distance, considering the fact that
a large number of sensors are utilized for localization. The magnetic data can be distinguishable
depending upon the indoor structure, as well as, the data collection frequency. Last but foremost,
the system is tested with a single device and hence device dependence is not analyzed. Research [8,37]
point out that different smartphones exhibit very different magnetic data depending on the sensitivity
and accuracy of the magnetometer used in the smartphones.

We, thereby, aim to mitigate such limitations by using only the data collected by magnetometer,
accelerometer, and gyroscope and do not rely on Wi-Fi localization. The details of the proposed
approach are described in the following section.

3. Materials and Methods

This section describes an overview of the proposed approach. The details of data collection,
fingerprint database creation, training CNN, and localization process are explained.

3.1. Overview of Proposed Approach

The architecture of the proposed approach is shown in Figure 1. It incorporates two phases
including an offline phase which involves the fingerprint database making from the magnetic field
data. Camera images are also collected which are then used for CNN model training. Online phase,
on the other hand, involves the utilization of camera images from a smartphone to recognize the scenes.
The identified scenes serves two purposes in our approach: Floor identification as well as constraining
the search space for the magnetic fingerprint database. The magnetic data are used for localization and
a modified k nearest neighbor (mKNN) is proposed for this purpose. Accelerometer and gyroscope
data are utilized to find the heading estimation and distance traveled by the pedestrian in order to use
the extended Kalman filter (EKF) to refine the estimated location.
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Figure 1. Architecture of the proposed approach.

3.2. Deep Convolutional Neural Network

Deep learning based neural networks have proven their significance and attracted a considerable
attention during recent years. Especially, CNN have been utilized to solve many computer vision
issues, for instance, image classification, object detection, and scene recognition, etc. CNNs are based
on a large number of convolutional layers, pooling and fully connected layers. The convolutional
layer aims at extracting the local features from the input image. The essential role of a pooling
layer is to subsample the convolutional layer to reduce the size and dimensionality of each feature
map. Pooling layer computes some function on features map and two commonly used functions
are ’maximum’ and ’average’. Pooling layers do not incorporate activation functions; instead, they
use rectified linear unit (ReLU) function. The pooling average for each convolutional layer can be
calculated by [62]:

X[l]
ij =

1
MN

M

∑
m

N

∑
n

X[l−1]
iM+m,jN+n (1)

where i and j show the positions of the output map, while M and N are the pooling sample sizes.
A fully connected layer is related to a neural network and serves the purpose of classification.

Figure 2 shows the architecture of CNN model used for scene recognition. The network consists of
eight convolutional layers and six pooling layers. ReLU is used as activation with convolutional layers
four to eight. Pooling layers are used with a stride of 2. Four dropout layers are utilized as well for
regularization. Dropout layers are used to prevent complex co-adaptations on the training data and
avoid overfitting of the model. Research [63] suggested the use of dropout layers on fully connected
layers with a rate of 0.5. It randomly omits each hidden unit with a probability of 50% on each training
case for each presentation. The output of fully connected layer two is the number of classes for which
classification is to be made. We have selected different points on each floor of a three-floor building to
capture camera images which makes it a 15 classes prediction network. Adam optimizer is used to
train the CNN. The last layer uses the softmax function to normalize it into the probability distribution
of K probabilities which is equal to 15. It normalizes the network output to a probability distribution
over predicted classes. The standard softmax function [64] is denoted by:

σ(z)i =
ezi

∑K
j=1 ezj

(2)
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Figure 2. Convolutional neural network for scene recognition.

3.3. Data Collection

The data collection phase involves image capturing as well as magnetic field samples collection.
Figure 3 shows the points where the camera images are captured. In addition, the scenes at different
collection points are also shown. The images are captured using Samsung Galaxy S8 rear camera
for this purpose. It is a 12 mega pixel Dual Pixel, F-1.7 aperture, 1.4-micron pixels optical image
stabilization (OSI). Since Smartphone camera utilizes a potential amount of battery, hence camera
images are used rather than the video. The images are labeled programmatically. A subroutine is
defined wherein we feed the images of a collection point and its label. All images are labeled according
to the given label. Since we have used our own model for training and CNN networks require a large
amount of data for training purposes, 500 images at each collection point are captured. We use a total
of 7500 images for all collection points. Owing to the fact that the user can hold the phone in different
directions arbitrarily, the images are captured from slightly different angles. It is important to point
out that the images are captured with slightly varying light conditions so that the trained network can
predict in different light conditions. Each collection point index along with the floor number is used
as its class to make labels, e.g., the first point to the left on floor 3 map will be labeled as P310 for the
training purpose. It will serve two purposes: The predicted label is first used to identify the floor the
user is currently at, in order to load the respective magnetic fingerprint database. Secondly, it will be
used to narrow the search space for the magnetic field based localization. The training requires a large
amount of time depending on the volume of data used. We performed the training using Nvidia Titan
X on an Intel i7 machine running with 16.0 GB random access memory. It takes approximately 3 to 4 h
to finish the training process with the collected images.

The magnetic fingerprint database is also built during the data collection phase. Magnetic data
is collected at specific points separated by a distance of 1 m. Magnetic samples are collected using
Samsung Galaxy S8 and 100 samples are collected at each point. Later the collected data is normalized
and spline interpolation is used to generate the intermediate values. We make the magnetic fingerprint
database of the patterns formed by the magnetic values. As already pointed out that the magnetic
value can be very different for different devices, so it is not possible to make one magnetic fingerprint
database which can be used for various devices. However, research [8,37] pointed out as well as our
experiments reveal that the patterns formed from magnetic values are very similar, so we use magnetic
patterns instead of magnetic values. Figure 4 shows the magnetic data collection process to prepare the
fingerprint database. The magnetic values are transformed into magnetic patterns using the algorithm
proposed in [38]. For more details, readers are referred to [38].
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Figure 3. Image capturing points for training.

Magnetic sample collection points

Figure 4. Magnetic fingerprint collection.

3.4. Location Estimation

Location estimation is the online phase where the data from the user smartphone is utilized to
predict his current location. It involves the phases of scene recognition using the trained CNN model
and narrowing the database search space to calculate the final location of the user with the magnetic
patterns database. The location estimation process is shown in Figure 5.

Camera Preprocessing

Magnetometer Magnetic samples

Accelerometer

Gyroscope Heading

Heading 

& 

Step length

Step

Scene Recognition

Search space narrowing

Extended Kalman Filter

U
se

r 
L

o
ca

ti
o

n

Images

Scene info.

Figure 5. The process followed in location estimation.
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3.4.1. Scene Recognition

Scene recognition is done using the trained CNN classifier. The image from the user phone is
captured and sent to the server for scene recognition. The captured image is pre-processed before scene
recognition can be done. Preprocessing is an important task to improve the accuracy of an approach
and various preprocessing techniques have been used in research [65] with hidden Markov model,
support vector machines, etc. For example, research [66–68] uses silhouette preprocessing before
generating features to produce body skeleton models. The produced models are then used for human
tracking [69]. Similarly [70,71] have used depth silhouette from depth camera images for motion
tracking. Preprocessing in our model involves changing the size of the image and color normalization.
The size of the image is changed to 200 × 256 while the color is normalized for color range of [0 256].
We need only one image to identify the scene. It will save the phone battery which is substantially
consumed while capturing images. During the training process, the images are captured at points as
shown in Figure 3. The trained classifier presents the probability distribution for the scene images used
during the training phase. We take the higher probability scene and use it for search space narrowing.

The recognized scene during the scene recognition phase is used to load the magnetic database of
a specific floor. Since each scene is labeled with respect to its floor as well as a specific place, so, it can
be used to identify which floor the user is at. Then the recognized scene is utilized to narrow down the
search space in the magnetic database of that floor. The magnetic data can be very similar at different
places on a floor which causes higher localization errors. Scene recognition helps in narrowing down
the search space which will reduce the localization error.

3.4.2. Magnetic Localization

Localization is done using the proposed mKNN approach. Algorithm 1 is proposed which takes
the recognized scene information and magnetic samples from user phone and estimates the user’s
current location. The process followed in mKNN is described as well in Algorithm 1. We conduct
the experiment in a three-story building, so the first task is to identify the floor of the user. This task
is achieved with the recognized scene Sr using CNN classifier. Once a specific floor is identified,
the magnetic database MFdb

l is loaded for the localization process. The second task of the recognized
scene is to narrow down the search space. The recognized scene is employed to set the starting (dbS),
and ending (dbE) of the magnetic database to match user magnetic samples (MFS) against the database.
Magnetic samples occasionally contain random noise and slight fluctuations which are removed using
a low pass filter. Euclidean distance is calculated between the processed magnetic sample and magnetic
database using:

dE =
1
n

n

∑
i=1

√
(MFSi −MFdb

i )2 (3)

where dE represents Euclidean distance between magnetic samples MFS1,...,n and magnetic database
MFdb

1,...,n. Later, K1 number of location estimates (LE) are selected with the lowest dE, where K1 is
set to 11. The selected location estimates LE have two parameters: Calculated Euclidean distance
and location in longitude and latitude dimension and are denoted as LEloc,dis . Initially selected
location estimates are shown in Figure 6a, where the x and the y axis represent longitude and latitude,
respectively, while the size of displayed locations shows the distance(error). The normal procedure
of using KNN is to consider K neighbors and then calculate their centroid which serves as the
predicted location. The neighbors are considered based on their distance(error) from the user sample.
However, the neighbors can be very distant which increases the localization error. For example, if we
look at Figure 6b we can see that the selected candidates based on distance do not form a spatial group
and are separated distantly. The calculated centroid will be far away from the ground truth in this case.
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Algorithm 1: Find user location
Input: Recognized scene information (SR) & magnetic samples (MFS)
Output: User’s estimated location (Lp)

1: identify floor using Sr

2: load magnetic database MFdb
l

3: set dbS, and dbE // Set the search space for database
4: for h←− 1 to 2 do
5: for i←− dbS to dbE do
6: dE ←− calEucDis(MFS, MFdb

l ;
7: end for
8: (LEloc,dis)←− f indCandidates(K1, dE) // K1 denotes number of neighbors
9: for j←− 1 to length(k1) do

10: WLE ←− calWeight(LEloc,dis);
11: end for
12: fLE ←− f ilLocEst(K2, WLE);
13: Lp ←− mean( fLE);
14: end for

(a) Location candidates for k = 11 (b) Selected candidates with KNN

(c) Selected candidates with modified KNN

Error 7.6522 m

Error 1.7863 m

(d) Error using KNN, and mKNN

Figure 6. Location estimates and prediction using K nearest neighbor (KNN) and modified KNN.

We follow a different approach and calculate weights (WLE ) for each LE which has initially been
selected based on the distance(error) alone. The weight WLE is calculated using:

WLEi = 0.5 ∗ dEi +
0.5

min(dSi)
(4)
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where:
dSi = ||LEi − LEi+1,...,n−1|| (5)

The term dSi denotes the spatial distance of LEi to all other LE which are initially selected.
Equation (4) shows that the inverse proportional of dSi is taken which implies that the closer the two
location candidates are the higher the weight is and vice versa. So, we consider the Euclidean distance
of location candidates from the user sample, as well as, the spatial closeness of location candidates.
The intuition is that the spatially closer the location candidates are, the higher the probability is to find
the accurate user location as shown in Figure 6c. Then K2 number of filtered location candidates are
selected where K2 is set to 7. The value for K1 is set higher so that we can initially get location estimates
and later filter them to select the best among them using the calculated weight WLE . We follow the
same procedure and Figure 6d shows the results for KNN and mKNN. The results show that mKNN
can estimate a more accurate location of the user than that of KNN.

We use two consecutive frames to calculate user current location following the same procedure.
So, the location calculated from the first frame serves as the starting point for the pedestrian dead
reckoning (PDR). After that EKF is applied to the locations that we get from PDR and the magnetic
database. PDR involves the distance calculation traveled by the user and the heading estimation h.
The distance calculation is done using step count Sc in a particular frame and step length Sl estimation.
Step detection and heading estimation are calculated using the algorithm proposed in [38] which is
based on peak detection in accelerometer data. Before peak detection, the data is preprocessed with a
low pass filter to remove noise. Once step detection has been performed, step length of ith step Sli is
measured using Weinberg model [72]:

Sli =
c
√

amaxi − amini (6)

where amaxi , and amini represent the maximum and minimum acceleration of ith step, respectively,
while c is the step constant. Step constant c is calculated in the calibration process and depends upon
the height and step length of a user. Once the step count Sc, step length Sl , and heading h are found,
current location is calculated:

xi = xi−1 + Sc ∗ Sli ∗ cos(h) (7)

yi = yi−1 + Sc ∗ Sli ∗ sin(h) (8)

3.5. Evaulation

The accuracy evaluation of scene recognitioin involves the comparison of results from the
proposed approach to other approaches. For this purpose a variety of techniques can be exploited,
e.g., hidden markov model (HMM), embedded HMM, support vector machines (SVM), etc. [65,73–76].
SVM, developed by Cortes and Vapnik [77] is one of the powerful machine learning techniques to
perform classification. It divides the hyper-plane optimally so that to maximize the distance between
the classes [78]. Various kernel types can be used with SVM including radial, polynomial, neural, etc.
We used radial basis function as kernel to train SVM. Gamma is set to 0.0001 which is the parameter of
a Gaussian Kernel for non-linear SVM classification.

The evaluation of localization approach is performed using multiple techniques. KNN is the most
widely used technique in localization systems. We evaluate the accuracy of our localization module
by comparing it with KNN results. Since we have modified KNN approach, so it is more logical to
compare it to KNN than any other technique. However, we are using magnetic fingerprint (MFP)
with scene information and without scene information to analyze the impact of scene recognition on
localization accuracy. MFP involves taking the user sent magnetic sample and match it against the
magnetic fingerprint database to calculate the Euclidean distance. Minimum Euclidean distance
represents the user’s current location. Using scene information, MFP technique loads only the
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narrowed magnetic database; however, full magnetic database is used as search space when scene
information is not available.

4. Experiment and Results

This section contains the description of the setup and experiments conducted to evaluate the
accuracy of the proposed approach. The results from CNN classifier and localization process are
discussed separately.

4.1. Experiment Setup

The experiments are conducted in a three-story building of Yeungnam University whose
dimensions are 90 × 36 m2 for each floor. Figure 7 shows the area used to conduct the experiments.
The localization path is different for each floor and so do the image collection points. The area contains
three types of spaces: Area surrounded by walls at a distance of roughly 2 m, the area having a glass
at the boundaries, and the wide area where walls are at a distance of 5 to 6 m on each side. Figure 8
contains a few indoor scenes from the building where the experiment is performed. The ground truths
are manually marked on the ground and measured by both lasers as well as the measuring tape.

Localization path

Figure 7. The path used for experiments, floor 3 (top), floor 2 (middle), and floor 1 (bottom).
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Figure 8. Indoor scenes of the experiment area.

The camera images are captured during different time of the day and lighting conditions may
vary slightly. The smartphone is held in front of the user to collect the data. The magnetic data
are collected with Samsung smartphone SM-G950N (Galaxy S8) to make the fingerprint database.
Galaxy S8 contains a 3-axis magnetometer (AK09916C) which provides the magnetic Mx, My, and Mz

values [79]. Total magnetic field intensity is calculated as:

F =
√

M2
x + M2

y + M2
z (9)

Galaxy S8 contains 3-axis accelerometer (LSM6DSL) and gyroscope sensors (LSM6DSL) [80].
The magnetic database is built using three components of magnetic field including Mx, My, and Mz.
While magnetic field has a total of seven components but not all of them are suitable to make a
fingerprint. For example, declination (D), and inclination (I) of the magnetic field are angles which are
vulnerable to sudden abrupt movements of the smartphone. The data are collected over a sampling
rate of 10 Hz from magnetometer, accelerometer, and gyroscope. The magnetic database is built using
Galaxy S8 while the testing is performed using two devices: Galaxy S8 and LG G6 (LGM-G600L).

4.2. CNN Classifier Performance

The trained CNN classifier is used to recognize the indoor scene during the evaluation process.
During the training process, we used accuracy and validation accuracy to evaluate the model.
The model achieved a 99.13% training accuracy while the validation accuracy is 96.22%. Figure 9
shows the loss and accuracy of CNN model during the training process. For each scene, 200 images
are tested to evaluate the performance of CNN classifier. Images are re-sized to 200 × 266 dimension
and normalized for color range of [0 255]. Testing images are collected using Galaxy S8 and LG G6 to
perform the evaluation. Images are captured from different angles and during different time of the day.
So the collected images may vary slightly with respect to the lighting conditions of the environment.
The reported testing accuracy of CNN classifier is 91.04%.
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(a) Accuracy of CNN classifier (b) Loss of CNN classifier

Figure 9. Accuracy and loss of convolutional neural network (CNN) classifier for training.

Accuracy of CNN is compared with the accuracy of SVM for scene recognition. SVM achieve a
testing accuracy of 83.17% for scene recognition. Table 1 shows the statistics for each class.

Table 1. Accuracy statistics for CNN and support vector machines (SVM).

Class CNN Accuracy SVM Accuracy

0 0.942 0.890
1 0.925 0.880
2 0.920 0.800
3 0.912 0.880
4 0.887 0.740
5 0.854 0.710
6 0.953 0.910
7 0.924 0.880
8 0.957 0.899
9 0.870 0.760

10 0.901 0.843
11 0.890 0.820
12 0.882 0.810
13 0.928 0.846
14 0.913 0.808

Average 0.9104 0.8317

4.3. Performance of Indoor Localization

This section contains the results for indoor localization using the proposed mKNN approach.
The performance of mKNN is compared with KNN for localization. The localization process involves
three steps: Indoor scene recognition, magnetic database search space narrowing, and localization.
Indoor scene recognition is performed with the trained CNN classifier as described in Section 4.2.
The recognized scene is then used to load the magnetic database of the recognized floor and narrow
down the search space. It divides the magnetic database into a sub-database where only the
recognized scene area is searched for the possible match(es) between the user magnetic sample
and magnetic database.

KNN involves the matching of a sample against the database and finding K number of candidates
which have the lowest error. The selected K candidates are later used to calculate the centroid which
serves as the predicted location of the user. We followed the same process for our mKNN as explained
in Algorithm 1; however, we used the concept of ’weight’ which is calculated using the error of each
candidate as well as its minimum spatial distance to its neighbors. It helps to mitigate higher errors.
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We take user captured images from his smartphone and later same procedure is used to predict
his location with KNN and mKNN. The value of K is same for KNN and mKNN which is 7.
However, for mKNN, we initially set K to 11 and then select 7 candidates based on their calculated
weights. The localization is performed on three floors and Figure 10 shows the results for KNN and
mKNN. Table 2 displays the statistics for KNN and mKNN to show their localization performance.

(a) Localization results with scene recognition. (b) Localization results with scene recognition.

Figure 10. Localization results for S8 and G6.

Table 2. Error statistics for KNN and mKNN.

Method & Device Mean Error Standard Deviation 50% Accuracy 75% Accuracy

KNN-G6 1.86 1.44 1.53 2.88
mKNN-G6 1.46 1.23 1.08 2.22

KNN-S8 1.40 1.24 1.02 2.18
mKNN-S8 1.15 1.01 0.89 1.68

MFP-S8 with scene 2.04 1.44 1.50 2.9
MFP-G6 with scene 2.47 2.41 1.70 3.35

MFP-S8 without scene 14.05 17.45 5.74 2.28
MFP-G6 without scene 19.74 21.02 9.77 34.55

The results shown in Figure 10 demonstrate that the proposed mKNN performs better than
that of KNN to locate a person indoor. The results are better for both Galaxy S8 and LG G6.
Another noteworthy point is the analogous performance by Galaxy S8 and LG G6. The use of magnetic
patterns over magnetic intensity helps to mitigate the device dependence. While the magnetic database
is built using Galaxy S8, yet, the localization performance of LG G6 is very similar to Galaxy S8.
The lower errors are on account of scene recognition and magnetic pattern matching. We can see that
the results for MFS-S8 with scene information are higher than those of pattern matching. When different
smartphones are used the magnetic data intensity is different owing to the sensitivity of the installed
magnetometer of the smartphone. However, the patterns formed by magnetic intensity of these
smartphones are very much similar. Scene recognition shrinks the magnetic database and thus reduces
the localization error. If the scene information is not used for localization, the errors are very high as
shown in Figure 10b. Similarly the mean, 50% and 75% errors are very high when MFS is used without
scene recognition using different devices. Additionally, since the database is built using Galaxy S8,
the maximum as well mean errors are higher for LG G6 using MFP without scene information. Table 2
shows that the mean error with KNN is 1.86 m and 1.40 m for LG G6 and Galaxy S8 smartphones,
respectively. However, the proposed modified technique outperforms KNN and the mean error is
1.46 m for LG G6 while Galaxy S8 mean error is 1.15 m. Even though the same localization process
is followed for KNN and mKNN and the same value of K is used, yet the accuracy is improved
with mKNN. The user can be located within 1.08 m at 50 percent with mKNN irrespective of the
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smartphone used for localization. Indoor scene recognition helps to achieve the low localization error,
as, without scene recognition the magnetic database search space is large which results in higher error.

5. Discussion

In this research, We present an indoor localization approach which uses a smartphone based
multi-sensor fusion to locate a pedestrian indoors. The proposed approach is tested on Galaxy S8
and LG G6 to show its device independence. We have presented a deep learning based convolutional
neural network (CNN) to recognize the indoor scene. CNN achieves a prediction accuracy of 91.04%
for scene recognition. The recognized scene is further used to narrow down the search space in a
magnetic database which is used for localization. We introduced a modified K nearest neighbor
(mKNN) approach for indoor localization as well. The KNN approach experiences higher errors when
used with magnetic database due to the magnetic signature similarity at various locations. Contrary to
KNN which utilizes only the similarity of user sample and magnetic database, mKNN takes into
account both similarity as well as spatial closeness to perform the localization. The mKNN along with
the scene recognition model helps to achieve a higher localization accuracy. A multi-sensor fusion
approach is used to refine the localization accuracy. Pedestrian dead reckoning (PDR) data is used to
this end. Location calculated from magnetic database is fused with PDR location using an extended
Kalman filter (EKF). The proposed approach is able to achieve an accuracy of 1.08 m irrespective of
the smartphone used for localization. The approach shows a similar performance using two different
devices, i.e., Galaxy S8, and LG G6. Two important factors evaluated in this study are: Impact of
using magnetic patterns rather than the magnetic intensity on heterogeneous devices and role of
scene recognition to improve the localization accuracy. For first factor, we perform localization with
magnetic patterns, and MFP technique and compare their performance. MFP is affected when different
smartphones are used while magnetic patterns show very small change in localization accuracy when
different smartphones are used. The impact of scene recognition is analyzed by performing localization
without the scene information. Results demonstrate that without scene recognition the mean error
increases by a factor of 10.03 and 10.62 for Galaxy S8 and LG G6, respectively. So both scene recognition
and magnetic patterns play very important role to increase the localization accuracy. In any case, image
based scene recognition is vulnerable to bad light conditions and camera image resolution which can
limit its full functionality.

The proposed approach is energy efficient as well, as it does not use Wi-Fi data for localization,
and relies on a single image to recognize the indoor scene. The labor survey can be reduced by
adopting the crowdsourcing based data collection to build the magnetic database. The crowdsourcing
can also help to increase the image training data for CNN classifier as well. Our future work
includes the adoption of the proposed approach for localization in complicated environments
including shopping malls, and train stations, etc. Scene recognition under varying light conditions
is under research as well.

6. Conclusions

This work proposes a multi-sensor indoor localization approach which works on different
smartphones in a similar fashion. The magnetic data from the smartphone magnetometer is utilized to
make the database; however, instead of magnetic field values, magnetic patterns are used to achieve
device dependence. Since the magnetic signature similarity in the indoor environment may lead
to higher errors, the database search space is narrowed down using a scene recognition classifier.
A deep learning based convolutional neural network (CNN) classifier is used for scene recognition.
A modified K nearest neighbor (mKNN) is presented which considers magnetic signature similarity,
as well as the spatial closeness of selected candidates. The results demonstrate that mKNN improves
the localization accuracy and locates a person within 1.08 m at 50% irrespective of the smartphone
used for localization. We aim to reduce the labor time by adopting the crowdsourcing-based data
collection and extend the approach to test more complicated environments. Scene recognition is
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affected by camera image resolution and it is computationally complex. Similarly, varying light
conditions, dark environments or scene recognition in low light conditions can severely limit its
performance. We intend to research scene recognition under low light conditions in the future.
The current study does not consider different orientations of smartphone and we intend to work with
various orientations in the future.
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