A Novel Sparse Representation Classification Method for Gas Identification Using Self-Adapted Temperature Modulated Gas Sensors
Abstract
:1. Introduction
2. Experimental Set-Up and Data Collection
2.1. The Measurement Circuit
2.2. The Experimental Set-Up
- (1)
- Clean testing chamber with dry air for 50 s.
- (2)
- The testing gas at the desired concentration is conveyed to the testing chamber by MFCs for 100 s.
- (3)
- Clean the testing chamber with dry air for 100 s.
2.3. Data Collection
3. The Proposed SRC_MOD Algorithm for Gas Identification
Algorithm 1. Obtain the optimal solution ofand |
Input: The i-th class training samples , maximum error , k = 1. 1. Initialize dictionary and with two random matrices. 2. while () update ; update by pursuit algorithm [31]; ; ; end while Output: The i-th class synthesis dictionary and coefficient matrix . |
Algorithm 2. The proposed SRC_MOD algorithm |
Input: The training samples for n classes, testing samples. 1. for i = 1:n obtain and by Algorithm 1; obtain by Equation (11); end for 2. 3. Reconstructing the testing sample by Equation (14) 4. To identify the testing sample by Equation (15) Output: The label of the testing sample. |
4. Comparisons with Other Classifiers
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352. [Google Scholar] [CrossRef]
- Hierlemann, A.; Gutierrez-Osuna, R. Higher-order chemical sensing. Chem. Rev. 2008, 108, 563–613. [Google Scholar] [CrossRef]
- Marco, S.; Gutierrez-Galvez, A. Signal and data processing for machine olfaction and chemical sensing: A review. IEEE Sens. J. 2012, 12, 3189–3214. [Google Scholar] [CrossRef]
- Pardo, M.; Sberveglieri, G. Comparing the performance of different features in sensor arrays. Sens. Actuators B Chem. 2007, 123, 437–443. [Google Scholar] [CrossRef]
- Boeker, P. On ‘electronic nose’methodology. Sens. Actuators B Chem. 2014, 204, 2–17. [Google Scholar] [CrossRef]
- Alizadeh, T. Chemiresistor sensors array optimization by using the method of coupled statistical techniques and its application as an electronic nose for some organic vapors recognition. Sens. Actuators B Chem. 2010, 143, 740–749. [Google Scholar] [CrossRef]
- Llobet, E.; Brezmes, J.; Gualdron, O.; Vilanova, X.; Correig, X. Building parsimonious fuzzy ARTMAP models by variable selection with a cascaded genetic algorithm: Application to multisensor systems for gas analysis. Sens. Actuators B Chem. 2004, 99, 267–272. [Google Scholar] [CrossRef]
- Gualdrón, O.; Brezmes, J.; Llobet, E.; Amari, A.; Vilanova, X.; Bouchikhi, B.; Correig, X. Variable selection for support vector machine based multisensor systems. Sens. Actuators B Chem. 2007, 122, 259–268. [Google Scholar] [CrossRef]
- Yang, Y.S.; Ha, S.-C.; Kim, Y.S. A matched-profile method for simple and robust vapor recognition in electronic nose (E-nose) system. Sens. Actuators B Chem. 2005, 106, 263–270. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P.A.; Vincent, P.; Bengio, S. Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 2010, 11, 625–660. [Google Scholar]
- Peng, P.; Xiaojin, Z.; Xiaofang, P. Gas Classification Using Deep Convolutional Neural Networks. Sensors 2018, 18, 157. [Google Scholar] [CrossRef]
- Wei, G.; Li, G.; Zhao, J.; He, A. Development of a LeNet-5 Gas Identification CNN Structure for Electronic Noses. Sensors 2019, 19, 217. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Brudzewski, K.; Osowski, S.; Markiewicz, T. Classification of milk by means of an electronic nose and SVM neural network. Sens. Actuators B Chem. 2004, 98, 291–298. [Google Scholar] [CrossRef]
- Vergara, A.; Fonollosa, J.; Mahiques, J.; Trincavelli, M.; Rulkov, N.; Huerta, R. On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines. Sens. Actuators B Chem. 2013, 185, 462–477. [Google Scholar] [CrossRef] [Green Version]
- Sakumura, Y.; Koyama, Y.; Tokutake, H.; Hida, T.; Sato, K.; Itoh, T.; Akamatsu, T.; Shin, W.; Seitz, W.R. Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors 2017, 17, 287. [Google Scholar] [CrossRef]
- Shahid, A.; Choi, J.-H.; Rana, A.U.H.S.; Kim, H.-S. Least Squares Neural Network-Based Wireless E-Nose System Using an SnO2 Sensor Array. Sensors 2018, 18, 1446. [Google Scholar] [CrossRef]
- He, A.; Yu, J.; Wei, G.; Chen, Y.; Wu, H.; Tang, Z. Short-Time Fourier Transform and Decision Tree-Based Pattern Recognition for Gas Identification Using Temperature Modulated Microhotplate Gas Sensors. J. Sens. 2016, 2016, 7603931. [Google Scholar] [CrossRef]
- Li, C.; Heinemann, P.; Sherry, R. Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection. Sens. Actuators B Chem. 2007, 125, 301–310. [Google Scholar] [CrossRef]
- Aleixandre, M.; Sayago, I.; Horrillo, M.; Fernández, M.; Arés, L.; García, M.; Santos, J.; Gutierrez, J. Analysis of neural networks and analysis of feature selection with genetic algorithm to discriminate among pollutant gas. Sens. Actuators B Chem. 2004, 103, 122–128. [Google Scholar] [CrossRef]
- Cho, J.; Li, X.; Gu, Z.; Kurup, P.U. Recognition of explosive precursors using nanowire sensor array and decision tree learning. IEEE Sens. J. 2012, 12, 2384–2391. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, L.; Feng, X.; Zhang, D. Sparse representation based fisher discrimination dictionary learning for image classification. Int. J. Comput. Vis. 2014, 109, 209–232. [Google Scholar] [CrossRef]
- Zheng, C.-H.; Zhang, L.; Ng, T.-Y.; Shiu, C.K.S.; Huang, D.-S. Metasample-based sparse representation for tumor classification. IEEE/ACM Trans. Comput. Biol. Bioinform. 2011, 8, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, M.; Feng, X. Sparse representation or collaborative representation: Which helps face recognition? In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 471–478. [Google Scholar]
- Guo, D.; Zhang, D.; Zhang, L. Sparse representation-based classification for breath sample identification. Sens. Actuators B Chem. 2011, 158, 43–53. [Google Scholar] [CrossRef]
- Martinelli, E.; Polese, D.; Catini, A.; D’Amico, A.; Di Natale, C. Self-adapted temperature modulation in metal-oxide semiconductor gas sensors. Sens. Actuators B Chem. 2012, 161, 534–541. [Google Scholar] [CrossRef]
- Gosangi, R.; Gutierrez-Osuna, R. Active temperature programming for metal-oxide chemoresistors. IEEE Sens. J. 2010, 10, 1075–1082. [Google Scholar] [CrossRef]
- Engan, K.; Aase, S.O.; Husøy, J.H. Multi-frame compression: Theory and design. Signal Process. 2000, 80, 2121–2140. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- He, A.; Wei, G.; Yu, J.; Tang, Z.; Lin, Z.; Wang, P. A novel dictionary learning method for gas identification with a gas sensor array. IEEE Trans. Ind. Electron. 2017, 64, 9709–9715. [Google Scholar] [CrossRef]
- Koh, K.; Kim, S.; Boyd, S. l1 ls: A Matlab Solver for large-scale l1-Regularized Least Squares Problems. Available online: https://web.stanford.edu/~boyd/l1_ls/l1_ls_usrguide.pdf (accessed on 9 May 2019).
Label | Analyte | Concentration (ppm) | Number |
---|---|---|---|
1 | hydrogen | 1000, 2000, 3000, 4000, 5000 | 100 |
2 | methane | 1000, 2000, 3000, 4000, 5000 | 100 |
3 | carbon monoxide | 100, 200, 300, 400, 500 | 100 |
4 | benzene | 10, 15, 20, 25, 30 | 100 |
Total | 400 |
Algorithm | Accuracy (%) | Training Time (s) | Testing Time (ms) |
---|---|---|---|
SRC_MOD | 98.44 | 0.2061 | 3.1 |
SRC | 98.52 | no need | 1987.9 |
DL | 96.88 | 0.8061 | 6.5 |
Deep learning | 91.87 | 12.84 | 23.5 |
BP | 84.51 | 6.399 | 12.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, A.; Wei, G.; Yu, J.; Li, M.; Li, Z.; Tang, Z. A Novel Sparse Representation Classification Method for Gas Identification Using Self-Adapted Temperature Modulated Gas Sensors. Sensors 2019, 19, 2173. https://doi.org/10.3390/s19092173
He A, Wei G, Yu J, Li M, Li Z, Tang Z. A Novel Sparse Representation Classification Method for Gas Identification Using Self-Adapted Temperature Modulated Gas Sensors. Sensors. 2019; 19(9):2173. https://doi.org/10.3390/s19092173
Chicago/Turabian StyleHe, Aixiang, Guangfen Wei, Jun Yu, Meihua Li, Zhongzhou Li, and Zhenan Tang. 2019. "A Novel Sparse Representation Classification Method for Gas Identification Using Self-Adapted Temperature Modulated Gas Sensors" Sensors 19, no. 9: 2173. https://doi.org/10.3390/s19092173
APA StyleHe, A., Wei, G., Yu, J., Li, M., Li, Z., & Tang, Z. (2019). A Novel Sparse Representation Classification Method for Gas Identification Using Self-Adapted Temperature Modulated Gas Sensors. Sensors, 19(9), 2173. https://doi.org/10.3390/s19092173