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Abstract: A novel sparse representation classification method (SRC), namly SRC based on Method of
Optimal Directions (SRC_MOD), is proposed for electronic nose system in this paper. By finding
both a synthesis dictionary and a corresponding coefficient vector, the i-th class training samples are
approximated as a linear combination of a few of the dictionary atoms. The optimal solutions of the
synthesis dictionary and coefficient vector are found by MOD. Finally, testing samples are identified
by evaluating which class causes the least reconstruction error. The proposed algorithm is evaluated
on the analysis of hydrogen, methane, carbon monoxide, and benzene at self-adapted modulated
operating temperature. Experimental results show that the proposed method is quite efficient and
computationally inexpensive to obtain excellent identification for the target gases.

Keywords: electronic nose; gas identification; sparse representation classification (SRC); method of
optimal directions (MOD); temperature modulation

1. Introduction

Electronic noses are technical devices that contain a gas sensor array and pattern recognition
system [1]. However, the pattern recognition of electronic noses, in many cases, is plagued with
problems. It is quite usual to encounter drift, scattering due to concentration effects, highly correlated
features, or non-Gaussian data distributions [2,3]. In addition, due to high calibration costs and
complex experimental conditions, the number of training samples is limited. Hence, the performance
of classifier is very important to electronic noses, as they can improve the robustness to the problems
mentioned above.

At present, there are many classification methods for gas sensor data [4–9] such as deep learning
and support vector machine (SVM). Since the concept of deep learning was put forward, it has attracted
the attention of many scholars [10–12]. Peng et al. proposed a novel Deep Convolutional Neural
Network (DCNN) tailored for gas classification [13]. Wei et al. also proposed a new improved LeNet-5
gas identification convolutional neural network structure for electronic noses [14].

Because support vector machine (SVM) has good generalization properties and robustness against
the curse of dimensionality [15], SVM has been widely applied to gas identification [16–18]. Vergara
et al. used Inhibitory Support Vector Machine (ISVM) to detect and identify odor under complex
environmental conditions [17]. Sakumura et al. also used SVM to detect respiratory samples, and
achieved high detection accuracy [18].
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Other explored classification methods are artificial neural network [19], decision tree [20], and
Bayesian Networks [21], etc. For example, Aleixandre used probabilistic neural network (PNN) and
multilayer perceptrons (MLP) to discriminate four different pollutant gases [22]. Cho et al. used
classification and regression tree to identify acetone, nitrobenzene, octane, and nitrotoluene, and
obtained 94% classification accuracy [23].

Sparse representation classification (SRC) is proved to be robust to outliers, noise, and even
incomplete measurements [24–26], and some scholars have successfully used SRC to solve the problem
of gas classification, such as, Guo et al. [27] who used sparse representation-based classification to
identify breath samples. However, SRC is time consuming, which limits its application.

The contribution of this paper is to propose a novel sparse representation classification method,
namly SRC based on Method of Optimal Directions (SRC_MOD), to improve the classification
performance of electronic nose. In order to improve the learning speed, the training set is divided
into some subsets according to the label of samples, and the optimal solution of synthesis dictionary
submatrix and coefficient submatrix are solved by MOD. Moreover, the testing phase is separated from
the training phase. The structure of the article is as follows: Section 2 describes briefly introduces the
experimental setup and data collection. Section 3 analyzes the proposed SRC_MOD method. Section 4
discusses comparison results with other classifiers. Section 5 presents the conclusions.

2. Experimental Set-Up and Data Collection

2.1. The Measurement Circuit

The selectivity and sensitivity of the metal oxide gas sensors can be improved by optimizing
the operation temperature of the sensors [28,29]. Martinelli designed a self-adapted temperature
modulation circuit and achieved high detection accuracy. This method implements the concept of
self-adapted temperature modulation, and it is based on the evidence that the sensitivity to the gas of
the sensor resistance depends on the operating temperature, and, conversely, the sensitivity to the
temperature depends on the gas [28].

In this paper, we proposed an improved self-adapted temperature modulated measurement circuit
to improve the performance of the electronic nose. The measurement circuit is shown in Figure 1.
It mainly contains a multivibrator circuit, three gas sensors and a comparator C1. The resistances of
sensor 1 and sensor 2 are part of the multivibrator circuit. VREFL and VREFH represent low and high
reference voltage of heating voltage, respectively. In this paper, VREFL = 2 V and VREFH = 5 V.
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We can see from Figure 1 that if the output voltage VO3 of the 555 timer is low (VO3 ≈ 0 V),
VO3 < VREFL, the output voltage of comparator C1 is low, and the transistor T1 will be cut off. When this
happens, the heating voltage across sensor 3 or the three sensors? will be close to VREFL. On the other
hand, if the output voltage VO3 is high (VO3 ≈ VCC), VO3 > VREFL, the output voltage of comparator C1

is high, the transistor T1 will be turned on. When this occurs, the heating voltage across sensor 3 or the
three sensors? will be close to VREFH.

VO3 is a square wave signal whose period depends on the capacitor C and the sensor resistances
of sensor 1 and sensor 2. The charging time of capacitor C is given by:

T1 = (RA + RB)C ln
VCC −VT−

VCC −VT+
(1)

where, VT+ = 2
3 VCC, VT− = 1

3 VCC.
And the discharge time of the capacitor C is given by:

T2 = RBC ln
0−VT+

0−VT−
(2)

hence, the period of square wave signal is:

T = T1 + T2 = (RA + 2RB)C ln 2 (3)

and the duty cycle of the square wave signal VO3 is:

q =
RA

RA + RB
(4)

The output voltage of the third sensor 3 is given by:

VO =
RL

RS3 + RL
VCC (5)

where, RS3 is the sensor resistor of the third TGS2620 sensor.

2.2. The Experimental Set-Up

Figure 2 shows the experimental set-up. The testing system uses two computer-controlled, digital
mass flow controllers (MFCs). The testing gas at the desired concentration is conveyed to a 300 mL
volume testing chamber by MFCs with highly reproducibility and higher accuracy. We keep the total
flow constant for each test. In this paper, the total flow rate is set to 500 sccm.
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The above-mentioned measurement circuit that contains three gas sensors (TGS2610, TGS2610,
and TGS2620, Figaro, Inc. Japan) is placed into the testing chamber. In order to collect all experimental
samples, a LabVIEW environment program running on a PC platform, and the sample frequency is set
to 1 Hz.

The measurement procedure is as follows:

(1) Clean testing chamber with dry air for 50 s.
(2) The testing gas at the desired concentration is conveyed to the testing chamber by MFCs for 100 s.
(3) Clean the testing chamber with dry air for 100 s.

When the three sensors return to baseline steady-state response, repeat step 1 to 3 for the next test
until all the experiments are completed.

2.3. Data Collection

Four chemical analytes with different concentrations are tested by the electronic nose system.
As shown in Table 1, the tested gases are hydrogen, methane, carbon monoxide, and benzene. Each
test is repeated 20 times, and finally 400 samples are collected.

Table 1. Dataset in detail.

Label Analyte Concentration (ppm) Number

1 hydrogen 1000, 2000, 3000, 4000, 5000 100
2 methane 1000, 2000, 3000, 4000, 5000 100
3 carbon monoxide 100, 200, 300, 400, 500 100
4 benzene 10, 15, 20, 25, 30 100

Total 400

Figure 3 shows the heating voltage of 30 ppm benzene and the output voltages of four analytes.
We can see from Figure 3a, the frequency of heating waveform in the middle is higher than that on both
sides. The reason for this phenomenon is related to the change of resistances of sensor 1 and sensor 2.
The reducing gas is injected into the testing chamber from the time of 51 to 150 s, which leads to the
decrease of sensor resistances and the increase of waveform frequency. In this paper, setting C = 100 µF,
the periods T of the heating voltage range from 2 to 25 s and the frequencies range from 40 to 500 mHz.
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Figure 3. (a) The heating voltage of 30 ppm benzene; (b) The output voltages of 3000 ppm hydrogen,
3000 ppm methane, 300 ppm carbon monoxide, and 30 ppm benzene.

In this paper, 40 samples are choosed as a testing set, and the other samples for training and
validation. In order to improve robustness of the algorithm, the classifiers use 10-fold cross-validation
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method. 360 samples are randomly divided into 10 subsets with equal size. A single subset is retained
as the validation set, and the remaining nine subsets are used as training set. Hence, the number of
validation samples is 36 and the number of training samples is 324. The program runs 10 times, with
each of the 10 subsets used exactly once as the validation set. The prediction model with the highest
recognition rate is used as the final model to identify the testing gas.

3. The Proposed SRC_MOD Algorithm for Gas Identification

Suppose VO ∈ R250×1 denotes a sensor signal that is a time-based variable and in total has
250 points. Firstly, the sensor siganl is removed additive noise or drift by x = VO − Vre f , where,
Vre f is baseline steady-state output voltage in dry air. Then, the sensor sample x is normalized
by x = (x−min(x))/(max(x) −min(x)), where, min() and max() denote the sample minimum and
maximum value.

The normalized training sample dataset is represented by a matrix X = [X1, X2, · · · , Xn] ∈ R250×324,
where, Xi, i = 1, 2, · · · , n, is a submatrix of training sample corresponding to class i and each column is
a sensor sample, n is total number of categories.

The ith class training samples Xi is approximated as a linear combination of some few of the
dictionary atoms. The approximation X∗i can be written as:

X∗i = DiWi s.t. min‖Wi‖0 (6)

where, ‖ · ‖0 is l0-norm, Wi is the coefficients of the ith class training samples and most of the entries
in Wi are zero, Di is a synthesis dictionary corresponding to class i. Equation (6) describes each
given sensor signal as the sparsest representation Wi over the synthesis dictionary Di, and aims to
jointly find the proper representations and the dictionary. If a solution has been found such that every
representation has fewer non-zero entries, a candidate feasible model has been found. In this paper,
the synthesis dictionary Di is initialized as a random matrix with the size of 250 × 250.

Equation (6) can be formulated as an optimization problem with respect to Wi and Di. With γ, we
may put it as:

{Di, Wi} = argmin
Di,Wi

(‖Xi −DiWi‖
2
2 + γ‖Wi‖0) (7)

As γ increases, the solution is getting more dense. Solutions of Equation (7) can be found by the
Method of Optimal Directions (MOD). MOD is a dictionary learning algorithm [30]. It’s aim is to
find both a dictionary Di and a corresponding coefficient matrix Wi such that the representation error
R = Xi −DiWi is minimized and Wi fulfill some sparseness criterion. The procedures of obtaining the
optimal solution of Di and Wi are summarized in Algorithm 1.

Algorithm 1. Obtain the optimal solution of Di and Wi

Input: The i-th class training samples Xi, maximum error ε, k = 1.

1. Initialize dictionary D(0)
i and W(0)

i with two random matrices.
2. while (error > ε)

update D(k+1)
i = Xi(W

(k)
i )

T
(W(k)

i (W(k)
i )

T
)
−1

;

update W(k+1)
i = argmin

Wi
(‖Xi −D(k)

i W(k)
i ‖

2

2) by pursuit algorithm [31];

error = ‖Xi −D(k)
i W(k)

i ‖
2

F;
k← k + 1 ;
end while

Output: The i-th class synthesis dictionary Di and coefficient matrix Wi.

For ∀i, the training samples X can be projected onto a coding coefficient space via PiX, where Pi is
an analysis dictionary corresponding to class i. The coding coefficient matrix Wi is given by:
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Wi = PiXi (8)

where, Pi is a full-rank matrix. If most of large coefficients generated by PiX are concentrated in Wi,
while the coding coefficients of the other class training samples over Pi is as small as possible, the
discrimination power of Pi can be promoted. Hence, we may improve the discrimination power of Pi

by min ‖PiXi‖
2
F, where, Xi is the complementary data matrix of Xi in the whole training set X and ‖ · ‖F

is the Hilbert-Schmidt norm or the Frobenius norm.
We evaluate the error using a Frobenius norm. The i-th class analysis dictionary Pi can be

approximated by

Pi = argmin(
Pi

‖Wi − PiXi‖
2
F + α‖PiXi‖

2
F + β‖Pi‖

2
F) (9)

where, the first term minimizes the error of the ith class coding coefficients, the second term is used to
improve the recognition performance of the analysis dictionary Pi, and α is a scalar constant. The third
term is to avoid a high risk of overfitting to training samples, and β is a regularization parameter.

We then solve for Pi by least-squares. Differentiating Formula (9) with respect to Pi, such a
differentiation results in:

∂
∂Pi

(‖Wi − PiXi‖
2
F + α‖PiXi‖

2
F + β‖Pi‖

2
F)

= 2(PiXi −Wi)XT
i + 2αPiXiX

T
i + 2βPi

(10)

Setting Equation (10) equal to zero gives the optimum Pi as:

Pi = (WiXT
i )(XiXT

i + αXiX
T
i + βI)

−1
(11)

Since Wi = PiXi, Equation (6) can also be given by

X∗i = DiPiXi (12)

Define Φi = DiPi as a projection matrix, and the approximation X∗i is then rewritten as

X∗i = ΦiXi (13)

Using Equation (13), an arbitrary testing sample xtest can be reconstructed as:

x∗i = Φixtest (14)

We obtain n approximations x∗1, x∗2, · · · , x∗n, and calculate the residual between xtest and x∗i by

Label(xtest) = argmin
i
‖x∗i − xtest‖

2
2 (15)

where, ‖ · ‖2 is l2-norm. The label corresponding to the minimum residual is the class of the testing
sample.

Figure 4 shows the original testing sample xtest and four reconstrcted samples x∗i , (i = 1, 2, 3, 4). x∗i is
obtained by Formula (14). From Figure 4, we can see that x∗2 is closest to the original testing sample xtest

The residuals between xtest and x∗i , (i = 1, 2, 3, 4) are represented in Figure 5. From Figure 5, we can see
that the second residual is the smallest. Hence, the testing sample xtest is the 2nd class, namely methane.
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Figure 4. The original testing sample and four reconstrcted samples for 1000 ppm methane (a) The
original testing sample xtest and the 1th class reconstrcted sample x∗1; (b) The original testing sample
xtest and the 2th class reconstrcted sample x∗2; (c) The original testing sample xtest and the 3th class
reconstrcted sample x∗3; (d) The original testing sample xtest and the 4th class reconstrcted sample x∗4.
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Figure 5. Residuals between the original sample and reconstructed samples.

The proposed SRC_MOD algorithm is summarized in Algorithm 2.

Algorithm 2. The proposed SRC_MOD algorithm

Input: The training samples for n classes, testing samples.
1. for i = 1:n

obtain Di and Wi by Algorithm 1;
obtain Pi by Equation (11);

end for
2. Φi = DiPi
3. Reconstructing the testing sample by Equation (14)
4. To identify the testing sample by Equation (15)

Output: The label of the testing sample.
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4. Comparisons with Other Classifiers

In order to evaluate the performance of the proposed algorithm, we compare it with other
algorithms, such as SRC (used in [27]), the dictionary learning (DL) classifier (proposed in [32]), deep
learning (used in [14]) and BP artificial neural network. All experiments in this paper run on a dual-core
processor with a CPU main frequency of 2.4 GHz. Python is applied for deep learning and MATLAB
for the other algorithms. Accuracy and processing time are the average values of all testing samples.

For SRC, the algorithm is the same as that in [27]. At first, the testing sample is approximated as a
linear combination of all training samples

xtest = WXtrain (16)

where, W is a sparse coefficient vector, Xtrain is a matrix of all training samples.
The sparsest solution of Equation (16) is defined as the following an l1-minimization problem:

W = argmin
W

(‖WXtrain − xtest‖
2 + λ‖W‖1) (17)

where, ‖ · ‖1 is l1-norm, λ is the regularization parameter. The solution to the l1-minimization problem
can also be obtained by using the MATLAB package provided by Reference [33]. Keep the ith class
coefficients and set the other coefficients equal to zero. We have

W∗i = {0, 0, Wi, · · · , 0} (18)

Reconstruct the testing sample by x∗i = W∗i Xtrain, (i = 1, 2, 3, 4) and use Equation (15) to obtain
the class of the testing sample.

For DL classifier, the i-th class analysis dictionary, coding coefficients, and synthesis dictionary
are trained together to generate the prediction model. It is a simple and effective dictionary learning
algorithm. This is our previous work and more details of the algorithm are shown in [32].

For deep learning, as shown in Figure 6, a LeNet-5 convolutional neural network structure is built.
C1 and C3 are convolutional layers with kernel size of 3 × 3 and 2 × 2, respectively. C1 computes
20 filters over its input. The first convolutional layer C1 takes a matrix with size of 25 × 10 × 1 and
outputs a matrix with size of 25 × 10 × 20. Pooling layer P2 and P4 are all done with 2 × 2 windows.
Max pooling consists of extracting windows from the input features and outputting the max value of
each channel. Before the first max-pooling layer P2, the feature map is 25× 10, but the pooling operation
halves it to 12 × 5. The numbers of fully connected layer F5 and F6 are 120 and 84, respectively. Finally,
the label of gas sample is obtained. This is also our previous work and more details are shown in [14].Sensors 2019, 19, x FOR PEER REVIEW 9 of 11 
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For the BP artificial neural network, the structure of the BP network is set to 250-501-4. The transfer
function ‘tansig’ is applied for hidden layer, and ‘purelin’ for output layer.

The experimental results of the proposed SRC_MOD method are shown in Table 2. From Table 2,
we can see that the average accuracy of SRC_MOD is about 98.44%, the average training time is nearly
0.2061 s and the average testing time is nearly 3.1 ms. SRC_MOD classifier obtains high accuracy in
short testing time. Hence, the performance of the SRC_MOD classifier is perfect.

Table 2. Performance comparison with other algorithms.

Algorithm Accuracy (%) Training Time (s) Testing Time (ms)

SRC_MOD 98.44 0.2061 3.1
SRC 98.52 no need 1987.9
DL 96.88 0.8061 6.5

Deep learning 91.87 12.84 23.5
BP 84.51 6.399 12.7

The experimental results of other classifiers are also shown in Table 2. The average accuracy of
SRC is about 98.52% and the average testing time is nearly 1987.9 ms. The testing time is 641 times
longer than that of SRC_MOD. The main reason is that training and testing of SRC are conducted
simultaneously, solving l1-minimization problem is time consuming, repeatedly training for each test
leads to longer processing time.

The average accuracy of DL classifier is about 96.88% and the testing time is nearly 6.5 ms. We find
that SRC_MOD method is superior to the DL classifier in both recognition accuracy and testing time.
Since alternating direction method of multipliers(ADMM) is more complex than MOD when obtaining
the optimal solution of Di.

The average accuracy of deep learning is about 91.87%, the average training time is nearly
12.84 s and testing time is nearly 23.5 ms. The performance of deep learning significantly worse than
SRC_MOD method. The main reason is that deep learning is more suitable for large training sets.
In this experiment, the size of training samples is too small to show its advantage. For BP artificial
neural network, the performance significantly worse than the other classifiers.

In a word, comparison results show that the proposed SRC_MOD method is quite efficient and
computationally inexpensive to obtain excellent identification for the target gases.

5. Conclusions

This paper presents a SRC_MOD gas recognition algorithm. First the i-th class training samples are
approximated as a linear combination of the synthesis dictionary atoms. Next, MOD is applied to solve
the optimal solution of the synthesis dictionary and coefficient vector. Finally, we obtain the analysis
dictionary and establish the prediction model. Compared with other classical classifiers (such as SRC,
dictionary learning classifier, deep learning and BP artificial neural network), the experimental results
show that SRC_MOD has better performance, not only in recognition rate but also in testing speed.
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