The Development of CMOS Amperometric Sensing Chip with a Novel 3-Dimensional TiN Nano-Electrode Array
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chip Design and Fabrication
2.3. Apparatus and Electrochemical Measurement
3. Results
3.1. Numeric Simulation of the Electric Field Distribution of Nano- and Micro-Electrodes
3.2. Fabrication and Characterizations of Nano-Electrode Array
3.3. Electrochemical Characterization of TiN 3D-NEA-Based Sensing Chip
3.4. Electrochemical Measurement of H2O2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- St John, A.; Price, C.P. Existing and Emerging Technologies for Point-of-Care Testing. Clin. Biochem. Rev. 2014, 35, 155–167. [Google Scholar] [PubMed]
- Cui, G.; Yoo, J.H.; Lee, J.S.; Yoo, J.; Uhm, J.H.; Cha, G.S.; Nam, H. Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes. Analyst 2001, 126, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Macia, L.; Smyth, M.R.; Morrin, A.; Killard, A.J. Enhanced electrochemical reduction of hydrogen peroxide on silver paste electrodes modified with surfactant and salt. Electrochim. Acta 2011, 56, 4146–4153. [Google Scholar] [CrossRef]
- Lin, C.-H.; Wei, L.-Y.; Lee, J.-H.; Lien, C.-L.; Lu, C.-H.; Yuan, C.-J. Effect of anions on the oxidation and reduction of hydrogen peroxide on the gold nanoparticle-deposited carbon fiber paper electrode. Electrochim. Acta 2015, 180, 64–70. [Google Scholar] [CrossRef]
- Wang, S.C.; Chang, K.S.; Yuan, C.J. Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochim. Acta 2009, 54, 4937–4943. [Google Scholar] [CrossRef]
- Karimian, N.; Moretto, L.M.; Ugo, P. Nanobiosensing with Arrays and Ensembles of Nano-electrode. Sensors 2016, 17, 65. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.H.; Dai, C.L.; Yang, M.Z. Fabrication and characterization of CMOS-MEMS magnetic microsensors. Sensors 2013, 13, 14728–14739. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Hesketh, P.J.; Hunter, G.W. Chemical Microsensors. Electrochem. Soc. Interface 2004, 13, 22–29. [Google Scholar]
- Qu, H. CMOS MEMS Fabrication Technologies and Devices. Micromachines 2016, 7, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.J.; O’Mahony, A.M.; Compton, R.G. Microelectrode arrays for electrochemistry: Approaches to fabrication. Small 2009, 5, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Triroj, N.; Jaroenapibal, P.; Shi, H.; Yeh, J.I.; Beresford, R. Microfluidic chip-based nano-electrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection. Biosens. Bioelectron. 2011, 26, 2927–2933. [Google Scholar] [CrossRef] [PubMed]
- Moretto, L.M.; Tormen, M.; De Leo, M.; Carpentiero, A.; Ugo, P. Polycarbonate-based ordered arrays of electrochemical nano-electrodes obtained by e-beam lithography. Nanotechnology 2011, 22, 185305. [Google Scholar] [CrossRef] [PubMed]
- Sentic, M.; Virgilio, F.; Zanut, A.; Manojlovic, D.; Arbault, S.; Tormen, M.; Sojic, N.; Ugo, P. Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nano-electrode arrays. Anal. Bioanal. Chem. 2016, 408, 7085–7094. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Chen, S.; Yang, F.; Wu, B. Dynamic Diffuse Double-Layer Model for the Electrochemistry of Nanometer-Sized Electrodes. J. Phys. Chem. B 2006, 110, 3262–3270. [Google Scholar] [CrossRef] [PubMed]
- Norton, J.D.; White, H.S.; Feldberg, S.W. Effect of the electrical double layer on voltammetry at microelectrodes. J. Phys. Chem. 1990, 94, 6772–6780. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, G. Simulating the structure and effect of the electrical double layer at nanometre electrodes. Nanotechnology 2007, 18, 335201. [Google Scholar] [CrossRef]
- Sánchez-Molas, D.; Esquivel, J.P.; Sabaté, N.; Muñoz, F.X.; del Campo, F.J. High Aspect-Ratio, Fully Conducting Gold Micropillar Array Electrodes: Silicon Micromachining and Electrochemical Characterization. J. Phys. Chem. C 2012, 116, 18831–18846. [Google Scholar] [CrossRef]
- Morf, W.E.; de Rooij, N.F. Performance of amperometric sensors based on multiple microelectrode arrays. Sens. Actuators B Chem. 1997, 44, 538–541. [Google Scholar] [CrossRef]
- Kurowska-Tabor, E.; Jaskuła, M.; Sulka, G.D. Sensitive Amperometric Sensing of Hydrogen Peroxide Using Ag Nanowire Array Electrode. Electroanalysis 2015, 27, 1968–1978. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, X.; Liu, D.; Hao, S.; Kong, R.; Du, G.; Asiri, A.M.; Sun, X. Copper-Nitride Nanowires Array: An Efficient Dual-Functional Catalyst Electrode for Sensitive and Selective Non-Enzymatic Glucose and Hydrogen Peroxide Sensing. Chem. Eur. J. 2017, 23, 4986–4989. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, G. Fabrication of nanoindented electrodes for glucose detection. J. Diabetes Sci. Technol. 2010, 4, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Wolfrum, B.; Kätelhön, E.; Yakushenko, A.; Krause, K.J.; Adly, N.; Hüske, M.; Rinklin, P. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems. Acc. Chem. Res. 2016, 49, 2031–2040. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Liu, X.; Wang, W.; Liu, C.; Li, Z.; Zhang, Z. Fabrication of TiN nanostructure as a hydrogen peroxide sensor by oblique angle deposition. Nanoscale Res. Lett. 2014, 9, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Chen, X.; Gu, L.; Zhang, L.; Zhou, X.; Liu, Z.; Han, P.; Xu, H.; Yao, J.; Zhang, X.; et al. A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion. Biosens. Bioelectron. 2011, 26, 4088–4094. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Hu, C.; Liu, H.; Du, G.; Xi, Y.; Jiang, Y. Building Ag nanoparticle 3D catalyst via Na2Ti3O7 nanowires for the detection of hydrogen peroxide. Sens. Actuators B Chem. 2010, 144, 289–294. [Google Scholar] [CrossRef]
- Jiang, F.; Yue, R.; Du, Y.; Xu, J.; Yang, P. A one-pot ‘green’ synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing. Biosens. Bioelectron. 2013, 44, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Zamfir, L.-G.; Rotariu, L.; Marinescu, V.E.; Simelane, X.T.; Baker, P.G.L.; Iwuoha, E.I.; Bala, C. Non-enzymatic polyamic acid sensors for hydrogen peroxide detection. Sens. Actuators B Chem. 2016, 226, 525–533. [Google Scholar] [CrossRef]
- Rani, G.P.J.; Saravanan, J.; Sheet, S.; Rajan, M.A.J.; Lee, Y.S.; Balasubramani, A.; Kumar, G.G. The Sensitive and Selective Enzyme-Free Electrochemical H2O2 Sensor Based on rGO/MnFe2O4 Nanocomposite. Electrocatalysis 2018, 9, 102–112. [Google Scholar] [CrossRef]
- Devasenathipathy, R.; Liu, Y.-X.; Yang, C.; Kohila rani, K.; Wang, S.-F. Simple electrochemical growth of copper nanoparticles decorated silver nanoleaves for the sensitive determination of hydrogen peroxide in clinical lens cleaning solutions. Sens. Actuators B Chem. 2017, 252, 862–869. [Google Scholar] [CrossRef]
- Yoon, Y.; Lee, G.S.; Yoo, K.; Lee, J.B. Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization. Sensors 2013, 13, 16672–16681. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, D.; Xu, L.; Hou, H.; You, T. A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosens. Bioelectron. 2011, 26, 4585–4590. [Google Scholar] [CrossRef] [PubMed]
- Avasarala, B.; Haldar, P. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochim. Acta 2010, 55, 9024–9034. [Google Scholar] [CrossRef]
- Yuan-Lung, C.; Jung-Chuan, C.; Zhen-Ce, L.; Tai-Ping, S.; Wen-Yaw, C.; Shen-Kan, H. Titanium Nitride Membrane Application to Extended Gate Field Effect Transistor pH Sensor Using VLSI Technology. Jpn. J. App. Phys. 2001, 40, 6311–6315. [Google Scholar]
- Hyde, G.K.; McCullen, S.D.; Jeon, S.; Stewart, S.M.; Jeon, H.; Loboa, E.G.; Parsons, G.N. Atomic layer deposition and biocompatibility of titanium nitride nano-coatings on cellulose fiber substrates. Biomed. Mater. 2009, 4, 025001–025010. [Google Scholar] [CrossRef] [PubMed]
- Piippo, J.; Elsener, B.; Böhni, H. Electrochemical characterization of TiN coatings. Surf. Coat. Technol. 1993, 61, 43–46. [Google Scholar] [CrossRef]
- Nunes Kirchner, C.; Hallmeier, K.H.; Szargan, R.; Raschke, T.; Radehaus, C.; Wittstock, G. Evaluation of Thin Film Titanium Nitride Electrodes for Electroanalytical Applications. Electroanalysis 2007, 19, 1023–1031. [Google Scholar] [CrossRef]
- Katsuhiro, Y.; Kazuhiro, N.; Tomohiko, K.; Katsuhisa, M.; Masami, O. Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method. J. Phys. D Appl. Phys. 2004, 37, 1095–1101. [Google Scholar]
- Stamenkovic, V.R.; Fowler, B.; Mun, B.S.; Wang, G.; Ross, P.N.; Lucas, C.A.; Marković, N.M. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science 2007, 315, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Bilić, A.; Reimers, J.R.; Hush, N.S. Adsorption of Pyridine on the Gold (111) Surface: Implications for “Alligator Clips” for Molecular Wires. J. Phys. Chem. B 2002, 106, 6740–6747. [Google Scholar] [CrossRef]
- Menon, V.P.; Martin, C.R. Fabrication and Evaluation of Nano-electrode Ensembles. Anal. Chem. 1995, 67, 1920–1928. [Google Scholar] [CrossRef]
- Zoski, C.G.; Yang, N.; He, P.; Berdondini, L.; Koudelka-Hep, M. Addressable Nano-electrode Membrane Arrays: Fabrication and Steady-State Behavior. Anal. Chem. 2007, 79, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Bailey, M.J.; Andrew, P.; Ryhanen, T. Electrochemical biosensors at the nanoscale. Lab Chip 2009, 9, 2123–2131. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, F.A.; Bond, A.M.; Hill, H.A.O.; Oliver, B.N.; Psalti, I.S.M. Electrochemistry of cytochrome c, plastocyanin, and ferredoxin at edge- and basal-plane graphite electrodes interpreted via a model based on electron transfer at electroactive sites of microscopic dimensions in size. J. Am. Chem. Soc. 1989, 111, 9185–9189. [Google Scholar] [CrossRef]
- Arrigan, D.W. Nano-electrodes, nano-electrode arrays and their applications. Analyst 2004, 129, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Gerlache, M.; Senturk, Z.; Quarin, G.; Kauffmann, J.-M. Electrochemical behavior of H2O2 on gold. Electroanalysis 1997, 9, 1088–1092. [Google Scholar] [CrossRef]
- Ismail, S.Z.; Khandaker, M.M.; Mat, N.; Boyce, A.N. Effects of hydrogen peroxide on growth, development and quality of fruits: A review. J. Agron. 2015, 14, 331–336. [Google Scholar]
- Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Millare, B.; O’Rourke, B.; Trayanova, N. Cell-Wide Coordination of ROS-Induced ROS Release by Hydrogen Peroxide in Mitochondrial Networks. Biophys. J. 2014, 106, 183a. [Google Scholar] [CrossRef]
- Su, J.; Gao, F.; Gu, Z.; Pien, M.; Sun, H. A novel 3-D fabrication of platinum nanoparticles decorated micro carbon pillars electrode for high sensitivity detection of hydrogen peroxide. Sens. Actuators B Chem. 2013, 181, 57–64. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, M.; Dong, R.; Cong, X.; Zhang, R.; Wang, X. Simultaneous Determination of Peroxide Hydrogen and Ascorbic Acid by Capillary Electrophoresis with Platinum Nanoparticles Modified Micro-disk Electrode. Electroanalysis 2017, 29, 2483–2490. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, J.; Zhou, J. In Enzyme-free electroreduction of hydrogen peroxide at polypyrrole/graphene/au microelectrode based on three-electrode-system array. In Proceedings of the 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), Beijing, China, 5–8 August 2013; pp. 1067–1070. [Google Scholar]
- Wang, J.; Escarpa, A.; Pumera, M.; Feldman, J. Capillary electrophoresis–electrochemistry microfluidic system for the determination of organic peroxides. J. Chromatogr. A 2002, 952, 249–254. [Google Scholar] [CrossRef]
- Lee, J.H.; Huynh-Nguyen, B.-C.; Ko, E.; Kim, J.H.; Seong, G.H. Fabrication of flexible, transparent silver nanowire electrodes for amperometric detection of hydrogen peroxide. Sens. Actuators B Chem. 2016, 224, 789–797. [Google Scholar] [CrossRef]
- Sanford, A.L.; Morton, S.W.; Whitehouse, K.L.; Oara, H.M.; Lugo-Morales, L.Z.; Roberts, J.G.; Sombers, L.A. Voltammetric Detection of Hydrogen Peroxide at Carbon Fiber Microelectrodes. Anal. Chem. 2010, 82, 5205–5210. [Google Scholar] [CrossRef] [PubMed]
Electrodes | Electrode Radius a (μm) | Total Active Area b (cm2) | Current Density (A·cm·mol−1) |
---|---|---|---|
3D-NEA | 0.10 | 3.42 × 10−8 | 8.02 × 105 |
Microelectrode | (33.6 × 8.8) c | 2.96 × 10−6 | 1.69 × 103 |
Electrodes | Sensitivity (μA·mM−1·cm−2) | Linear Range of Detection (mM) | LOD (μM) | Reference |
---|---|---|---|---|
MCP/Pt/NPs | 1280–1750 | ~7 | 9.6–17.7 | [49] |
PtNPs/PtME | NA | 0.4–800 | 0.2 | [50] |
Cu3N NA/CF | 7600 | 0.0001-10 | 0.0089 | [20] |
Ppy/GENS/Au | 32 | 1–10 | 300 | [51] |
Au microelectrodes | NA | 100–700 | 10 | [52] |
AgNW | 1640 | 1.7–3.4 | 46 | [53] |
AgNW Array | NA | 0.5–5.6 | 334 | [19] |
Carbon fiber microelectrodes | NA | 2–2000 | 2 | [54] |
TiN NRA film with porosity | NA | 0.02–3 | 20 | [23] |
3D TiN nano-electrode array | 667200 | 0.0001–5 | 0.1 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lien, C.-L.; Yuan, C.-J. The Development of CMOS Amperometric Sensing Chip with a Novel 3-Dimensional TiN Nano-Electrode Array. Sensors 2019, 19, 994. https://doi.org/10.3390/s19050994
Lien C-L, Yuan C-J. The Development of CMOS Amperometric Sensing Chip with a Novel 3-Dimensional TiN Nano-Electrode Array. Sensors. 2019; 19(5):994. https://doi.org/10.3390/s19050994
Chicago/Turabian StyleLien, Chun-Lung, and Chiun-Jye Yuan. 2019. "The Development of CMOS Amperometric Sensing Chip with a Novel 3-Dimensional TiN Nano-Electrode Array" Sensors 19, no. 5: 994. https://doi.org/10.3390/s19050994
APA StyleLien, C.-L., & Yuan, C.-J. (2019). The Development of CMOS Amperometric Sensing Chip with a Novel 3-Dimensional TiN Nano-Electrode Array. Sensors, 19(5), 994. https://doi.org/10.3390/s19050994