Spatially Resolved Cross-Linking Characterization by Imaging Low-Coherence Interferometry †
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Approach
2.2. Data Analysis
3. Results
3.1. Interferometric Profile Evaluation
3.2. Cross-Linking Characterization
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DSC | Differential scanning calorimetry |
FFT | Fast Fourier transform |
N-BK7 | Borosilicate-crown glass |
RDOT | Relative derived optical thickness |
ROI | Region of interest |
STFT | Short-time Fourier transform |
WPDE | Wrapped phase derivative evaluation |
Appendix A. Derivation of the Group Refractive Index
References
- Ma, H.; Jen, A.Y.; Dalton, L. Polymer-Based Optical Waveguides: Materials, Processing, and Devices. Adv. Mater. 2002, 14, 1339–1365. [Google Scholar] [CrossRef]
- Wolfer, T.; Bollgruen, P.; Mager, D.; Overmeyer, L.; Korvink, J.G. Flexographic and Inkjet Printing of Polymer Optical Waveguides for Fully Integrated Sensor Systems. Procedia Technol. 2014, 15, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Rashed, A.N.Z.; Mohamed, A.E.N.A.E.G.; Hanafy, S.A.E.R.S.; Aly, M.H. A comparative study of the performance of graded index perfluorinated plastic and alumino silicate optical fibers in internal optical interconnections. Optik 2016, 127, 9259–9263. [Google Scholar] [CrossRef]
- Kang, J.W.; Kim, J.P.; Lee, W.Y.; Kim, J.S.; Lee, J.S.; Kim, J.J. Low-loss Polymer Optical Waveguides with High Thermal Stability. MRS Proc. 2001, 708, BB4–8. [Google Scholar] [CrossRef]
- Jöhnck, M.; Müller, L.; Neyer, A.; Hofstraat, J. Copolymers of halogenated acrylates and methacrylates for the application in optical telecommunication: Optical properties, thermal analysis and determination of unsaturation by quantitative FT-Raman and FT-IR spectroscopy. Eur. Polym. J. 2000, 36, 1251–1264. [Google Scholar] [CrossRef]
- Kobayashi, J.; Matsuura, T.; Hida, Y.; Sasaki, S.; Maruno, T. Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches. J. Lightw. Technol. 1998, 16, 1024–1029. [Google Scholar] [CrossRef]
- Cai, D.; Neyer, A.; Kuckuk, R.; Heise, H. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication. Opt. Mater. 2008, 30, 1157–1161. [Google Scholar] [CrossRef]
- Hirschl, C.; Biebl-Rydlo, M.; DeBiasio, M.; Mühleisen, W.; Neumaier, L.; Scherf, W.; Oreski, G.; Eder, G.; Chernev, B.; Schwab, W.; et al. Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—A comparative study. Sol. Energy Mater. Sol. Cells 2013, 116, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Farris, R.J. Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings. J. Micromech. Microeng. 2003, 13, 80. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics; American Society for Testing and Materials: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Oreski, G.; Rauschenbach, A.; Hirschl, C.; Kraft, M.; Eder, G.C.; Pinter, G. Crosslinking and post-crosslinking of ethylene vinyl acetate in photovoltaic modules. J. Appl. Polym. Sci. 2017, 134, 101. [Google Scholar] [CrossRef]
- Hirschl, C.; Neumaier, L.; Puchberger, S.; Mühleisen, W.; Oreski, G.; Eder, G.C.; Frank, R.; Tranitz, M.; Schoppa, M.; Wendt, M.; et al. Determination of the degree of ethylene vinyl acetate crosslinking via Soxhlet extraction: Gold standard or pitfall? Sol. Energy Mater. Sol. Cells 2015, 143, 494–502. [Google Scholar] [CrossRef]
- Ehrenstein, G.; Riedel, G.; Trawiel, P. Thermal Analysis of Plastics: Theory and Practice; Hanser: Munich, Germany, 2004. [Google Scholar]
- Xia, Z.; Cunningham, D.; Wohlgemuth, J. A new method for measuring cross-link density in ethylene vinyl acetate-based encapsulant. Photovolt. Int. 2009, 5, 150–159. [Google Scholar]
- Stark, W.; Jaunich, M. Investigation of Ethylene/Vinyl Acetate Copolymer (EVA) by thermal analysis DSC and DMA. Polymer Test. 2011, 30, 236–242. [Google Scholar] [CrossRef]
- Peike, C.; Kaltenbach, T.; Weiß, K.A.; Koehl, M. Non-destructive degradation analysis of encapsulants in PV modules by Raman Spectroscopy. Sol. Energy Mater. Sol. Cells 2011, 95, 1686–1693. [Google Scholar] [CrossRef]
- Schlothauer, J.C.; Peter, C.; Hirschl, C.; Oreski, G.; Röder, B. Non-destructive monitoring of ethylene vinyl acetate crosslinking in PV-modules by luminescence spectroscopy. J. Polym. Res. 2017, 24. [Google Scholar] [CrossRef]
- Hirschl, C.; Neumaier, L.; Mühleisen, W.; Zauner, M.; Oreski, G.; Eder, G.; Seufzer, S.; Berge, C.; Rüland, E.; Kraft, M. In-line determination of the degree of crosslinking of ethylene vinyl acetate in PV modules by Raman spectroscopy. Sol. Energy Mater. Sol. Cells 2016, 152, 10–20. [Google Scholar] [CrossRef]
- Žukauskas, A.; Matulaitiene, I.; Paipulas, D.; Niaura, G.; Malinauskas, M.; Gadonas, R. Tuning the refractive index in 3D direct laser writing lithography: Towards GRIN microoptics. Laser Photonics Rev. 2015, 9, 706–712. [Google Scholar] [CrossRef]
- Carbone, N. Photochemical Crosslinking Reactions in Polymers. Ph.D. Thesis, Columbia University, New York, NY, USA, 2012. [Google Scholar]
- Kudo, H.; Yamamoto, M.; Nishikubo, T. Refractive Index Change during Photo Crosslinking Reaction of Poly (silsesquioxane) Derivatives Containing Cinnamoyl Moieties in the Side Chains. J. Netw. Polym. Jpn. 2007, 28, 11–18. [Google Scholar] [CrossRef]
- Infuehr, R.; Stampfl, J.; Krivec, S.; Liska, R.; Lichtenegger, H.; Satzinger, V.; Schmidt, V.; Matsko, N.; Grogger, W. 3D-structuring of Optical Waveguides with Two Photon Polymerization. MRS Online Proc. Libr. Arch. 2009, 1179. [Google Scholar] [CrossRef]
- Ford, H.; Tatam, R. Spatially-resolved volume monitoring of adhesive cure using correlated-image optical coherence tomography. Int. J. Adhes. Adhes. 2013, 42, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Sáinz, C.; Jourdian, P.; Escalona, R.; Calatroni, J. Real time interferometric measurements of dispersion curves. Opt. Commun. 1994, 110, 381–390. [Google Scholar] [CrossRef]
- Kumar, V.N.; Rao, D.N. Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive materials. J. Opt. Soc. Am. B 1995, 12, 1559. [Google Scholar] [CrossRef]
- An, W.; Carlsson, T.E. Speckle interferometry for measurement of continuous deformations. Opt. Lasers Eng. 2003, 40, 529–541. [Google Scholar] [CrossRef]
- Ruiz, C.G.T.; Torre-Ibarra, M.H.D.L.; Flores-Moreno, J.M.; Frausto-Reyes, C.; Santoyo, F.M. Cortical bone quality affectations and their strength impact analysis using holographic interferometry. Biomed. Opt. Express 2018, 9, 4818–4833. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Shakher, C. Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry. Appl. Opt. 2016, 55, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.; Sáinz, C.; Perrin, H.; Castell, R.; Calatroni, J. Refractive index distribution measurements by means of spectrally-resolved white-light interferometry. Opt. Laser Technol. 1992, 24, 333–339. [Google Scholar] [CrossRef]
- Taudt, C.; Baselt, T.; Nelsen, B.; Aßmann, H.; Greiner, A.; Koch, E.; Hartmann, P. Two-dimensional low-coherence interferometry for the characterization of nanometer wafer topographies. Int. Soc. Opt. Photonics 2016, 9890, 98900R. [Google Scholar] [CrossRef]
- Taudt, C.; Baselt, T.; Oreski, G.; Hirschl, C.; Koch, E.; Hartmann, P. Cross-linking characterization of polymers based on their optical dispersion utilizing a white-light interferometer. Int. Soc. Opt. Photonics 2015, 9525, 9525P. [Google Scholar] [CrossRef]
- Calatroni, J.; Guerrero, A.; Sáinz, C.; Escalona, R. Spectrally-resolved white-light interferometry as a profilometry tool. Opt. Laser Technol. 1996, 28, 485–489. [Google Scholar] [CrossRef]
- Sejdić, E.; Djurović, I.; Jiang, J. Time–frequency feature representation using energy concentration: An overview of recent advances. Digit. Signal Process. 2009, 19, 153–183. [Google Scholar] [CrossRef]
- Taylor Hobson Ltd. Form Talysurf® i-Series Datasheet; Taylor Hobson Ltd.: Leicester, UK, 2014. [Google Scholar]
- Bach, H.; Neuroth, N. The Properties of Optical Glass; Schott Series on Glass and Glass Ceramics; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Schott, A.G. Optical Glass Data Sheets. 2017. Available online: https://refractiveindex.info/download/data/2017/schott2017-01-20.pdf (accessed on 6 March 2019).
- Xie, W.; Hagemeier, S.; Woidt, C.; Hillmer, H.; Lehmann, P. Influences of edges and steep slopes in 3D interference and confocal microscopy. Int. Soc. Opt. Photonics 2016, 9890. [Google Scholar] [CrossRef]
- Soave, P.A.; Dau, R.A.F.; Becker, M.R.; Pereira, M.B.; Horowitz, F. Refractive index control in bicomponent polymer films for integrated thermo-optical applications. Opt. Eng. 2009, 48. [Google Scholar] [CrossRef]
- Sultanova, N.; Kasarova, S.; Nikolov, I. Dispersion Properties of Optical Polymers. Acta Phys. Pol.-Ser. A Gen. Phys. 2009, 116, 585–587. [Google Scholar] [CrossRef]
- Delbarre, H.; Przygodzki, C.; Tassou, M.; Boucher, D. High-precision index measurement in anisotropic crystals using white-light spectral interferometry. Appl. Phys. B 2000, 70, 45–51. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taudt, C.; Nelsen, B.; Rossegger, E.; Schlögl, S.; Koch, E.; Hartmann, P. Spatially Resolved Cross-Linking Characterization by Imaging Low-Coherence Interferometry. Sensors 2019, 19, 1152. https://doi.org/10.3390/s19051152
Taudt C, Nelsen B, Rossegger E, Schlögl S, Koch E, Hartmann P. Spatially Resolved Cross-Linking Characterization by Imaging Low-Coherence Interferometry. Sensors. 2019; 19(5):1152. https://doi.org/10.3390/s19051152
Chicago/Turabian StyleTaudt, Christopher, Bryan Nelsen, Elisabeth Rossegger, Sandra Schlögl, Edmund Koch, and Peter Hartmann. 2019. "Spatially Resolved Cross-Linking Characterization by Imaging Low-Coherence Interferometry" Sensors 19, no. 5: 1152. https://doi.org/10.3390/s19051152
APA StyleTaudt, C., Nelsen, B., Rossegger, E., Schlögl, S., Koch, E., & Hartmann, P. (2019). Spatially Resolved Cross-Linking Characterization by Imaging Low-Coherence Interferometry. Sensors, 19(5), 1152. https://doi.org/10.3390/s19051152