An Algorithmic Approach for Detecting Bolides with the Geostationary Lightning Mapper
Abstract
:1. Introduction
1.1. Meteors and Meteor Detection Systems
1.2. Geostationary Lightning Mapper Instrument
1.3. GLM’s Meteoroid Detection Size Range
2. Bolide Extraction Algorithm
2.1. Definition of Terms
2.2. Collecting GLM Groups Into Flashes
2.3. Flashes
2.3.1. Lightning Behavior
2.3.2. Confirmed Bolide
2.4. Individual Filter Design
2.4.1. Group Count Filter
2.4.2. Line Fit Filter
2.4.3. Energy Balance Filter
2.4.4. Group to Line Distance Filter
2.4.5. Polynomial to Energy Moving Window Filter
2.4.6. Signature Duration Filter
2.5. Algorithm Architecture
3. Filter Sensitivity and Algorithm Performance Discussion
3.1. Filtering Rate and Sensitivity Sample
3.2. Filter Performance
3.3. Small Bolides
3.4. General Discoveries
3.5. Cuban Meteor
3.6. Data Limitations and Future Work
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goodman, S.J.; Blakeslee, R.J.; Koshak, W.J.; Mach, D.; Bailey, J.; Buechler, D.; Carey, L.; Schultz, C.; Bateman, M.; McCaul, E.; et al. The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res. 2013, 125–126, 34–49. [Google Scholar] [CrossRef]
- Jenniskens, P.; Albers, J.; Tillier, C.E.; Edgington, S.F.; Longenbaugh, R.S.; Goodman, S.J.; Rudlosky, S.D.; Hildebrand, A.R.; Hanton, L.; Ciceri, F.; et al. Detection of meteoroid impacts by the Geostationary Lightning Mapper on the GOES-16 satellite. Meteorit. Planet. Sci. 2018, 53, 2445–2469. [Google Scholar] [CrossRef]
- Tagliaferri, E.; Spalding, R.; Jacobs, C.; Worden, S.P.; Erlich, A. Detection of Meteoroid Impacts By Optical Sensors in Earth Orbit. In Hazards Due to Comets Asteroids; Gehrels, T., Ed.; University of Arizona Press: Tuscon, AZ, USA, 1994; pp. 199–221. [Google Scholar]
- Trigo-Rodriguez, J.M.; Madiedo, J.M.; Gural, P.S.; Ca, A.; Llorca, J.; Fabregat, J.; Vítek, S.; Pujols, P. Determination of Meteoroid Orbits and Spatial Fluxesby Using High-Resolution All-Sky CCD Cameras. In Advances in Meteoroid and Meteor Science; Trigo-Rodríguez, J.M., Rietmeijer, F.J.M., Llorca, J., Janches, D., Eds.; Springer: New York, NY, USA, 2008; pp. 231–240. [Google Scholar]
- Ceplecha, Z.; Borovicka, J.; Elford, W.G.; ReVelle, D.O.; Hawkes, R.; Porubcan, V.; Simek, M. Meteor Phenomena and Bodies. Space Sci. Rev. 1998, 84, 327–471. [Google Scholar] [CrossRef]
- Moreno-Ibáñez, M.; Silber, E.A.; Gritsevich, M.; Trigo-Rodríguez, J.M. Verification of the Flow Regimes Based on High-fidelity Observations of Bright Meteors. Astrophys. J. 2018. [Google Scholar] [CrossRef]
- Miller, S.D.; Straka, W.C.; Bachmeier, A.S.; Schmit, T.J.; Partain, P.T.; Noh, Y.-J. Earth-viewing satellite perspectives on the Chelyabinsk meteor event. Proc. Natl. Acad. Sci. USA 2013, 110. [Google Scholar] [CrossRef] [PubMed]
- Jenniskens, P.; Shaddad, M.H.; Numan, D.; Elsir, S.; Kudoda, A.M.; Zolensky, M.E.; Le, L.; Robinson, G.A.; Friedrich, J.M.; Rumble, D.; et al. The impact and recovery of asteroid 2008 TC3. Nature 2009, 458, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Plane, J.M.C. Cosmic dust in the earth’s atmosphere. Chem. Soc. Rev. 2012, 41, 6507. [Google Scholar] [CrossRef] [PubMed]
- Stokes, G.H.; Barbee, B.W.; Bottke, W.F.; Buie, M.W.; Chesley, S.R.; Chodas, P.W.; Evans, J.B.; Gold, R.E.; Grav, T.; Harris, A.W.; et al. Update to Determine the Feasibility of Enhancing the Search and Characterization of NEOs. 2017. Available online: https://cneos.jpl.nasa.gov/doc/2017_neo_sdt_final_e-version.pdf (accessed on 15 January 2019).
- Harris, A.W.; D’Abramo, G. The population of near-earth asteroids. Icarus 2015. [Google Scholar] [CrossRef]
- Rumpf, C.M.; Lewis, H.G.; Atkinson, P.M. Asteroid impact effects and their immediate hazards for human populations. Geophys. Res. Lett. 2017, 44, 3433–3440. [Google Scholar] [CrossRef] [Green Version]
- Mathias, D.L.; Wheeler, L.F.; Dotson, J.L. A Probabilistic Asteroid Impact Risk Model: Assessment of Sub-300 m Impacts. Icarus 2017, 289, 106–119. [Google Scholar] [CrossRef]
- Popova, O.P.; Jenniskens, P.; Emel’yanenko, V.; Kartashova, A.; Biryukov, E.; Khaibrakhmanov, S.; Shuvalov, V.; Rybnov, Y.; Dudorov, A.; Grokhovsky, V.I.; et al. Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science 2013, 342, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.G.; Brachet, N.; Brown, D.; Assink, J.D.; Astiz, L.; Blaauw, R.; Boslough, M.; Borovic, J.; Ceranna, L.; Cooke, W.; et al. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 2013, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Dahlman, O.; Mackby, J.; Mykkeltveit, S.; Haak, H. Detect and Deter: Can Countries Verify the Nuclear Test Ban? Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Edwards, W.N.; Brown, P.G.; Weryk, R.J.; ReVelle, D.O. Infrasonic Observations of Meteoroids: Preliminary Results from a Coordinated Optical-radar-infrasound Observing Campaign. Earth Moon Planets 2007, 102, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Silber, E.A.; ReVelle, D.O.; Brown, P.G.; Edwards, W.N. An estimate of the terrestrial influx of large meteoroids from infrasonic measurements. J. Geophys. Res. 2009, 114, E08006. [Google Scholar] [CrossRef]
- SETI. CAMS Website, Website. 2018. Available online: http://cams.seti.org/ (accessed on 3 August 2018).
- SkySentinel, L. Sentinel Website, Website. 2018. Available online: http://goskysentinel.com/ (accessed on 3 August 2018).
- Madiedo, J.M.; Trigo-Rodriguez, J.M.; Alonso, J.; Zamorano, J.; Ocaña, F.; Docobo, J.A.; Pujols, P.; Lacruz, J. The Spanish Meteor Network (SPMN): Full coverage of the Iberian Peninsula by means of high-sensitivity CCD video devices. In Proceedings of the 2009 European Planetary Science Congress, Potsdam, Germany, 13–18 September 2009. [Google Scholar]
- Rault, J.-L.; Birlan, M.; Blanpain, C.; Bouley, S.; Caminade, S.; Colas, F.; Gattacceca, J.; Jeanne, S.; Lecubin, J.; Malgoyre, A.; et al. Fine-scale observations of the Doppler frequency shifts affecting meteor head radio echoes. In Proceedings of the IMC 2017, Petnica, Serbia, 21–24 September 2017. [Google Scholar]
- Martin, L. GLM Image Gallery. 2018. Available online: https://www.goes-r.gov/multimedia/instr-Glm.html (accessed on 19 September 2018).
- Rumpf, C.M. Private Correspondence with Lockheed Martin via email exchanging technical details on August 20th 2018. 2018. [Google Scholar]
- di Martino, M.; Cellino, A. Physical properties of comets and asteroids inferred from fireball observations. In Mitigation of Hazardous Comets and Asteroids; Belton, M.J.S., Morgan, T.H., Samarasinha, N.H., Yeomans, D.K., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 153–166. [Google Scholar]
- Brown, P.G.; Spalding, R.E.; ReVelle, D.O.; Tagliaferri, E.; Worden, S.P. The flux of small near-Earth objects colliding with the Earth. Nature 2002, 420, 294–296. [Google Scholar] [CrossRef] [PubMed]
- Gi, N. Refinement of Bolide Characteristics from Infrasound Measurements; The University of Western Ontario: London, ON, Candada, 2017. [Google Scholar]
- Carlomusto, M. Goes-R Series Product Definition and Users’ Guide, Greenbelt, Md. 2017. Available online: https://www.goes-r.gov/products/docs/PUG-L2+-vol5.pdf (accessed on 15 January 2019).
- Mach, D.M.; Christian, H.J.; Blakeslee, R.J.; Boccippio, D.J.; Goodman, S.J.; Boeck, W.L. Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Nemtchinov, I.V.; Svetsov, V.V.; Kosarev, I.B.; Golub, A.P.; Popova, O.P.; Shuvalov, V.V.; Spalding, R.E.; Jacobs, C.; Tagliaferri, E. Assessment of Kinetic Energy of Meteoroids Detected by Satellite-Based Light Sensors. Icarus 1997, 274, 259–274. [Google Scholar] [CrossRef]
- Chamberlin, A.B.; Fireballs, NASA Cent. Near Earth Object Study. 2018. Available online: https://cneos.jpl.nasa.gov/fireballs/ (accessed on 31 July 2018).
- Perlerin, V. Meteorite Hits Cuba with Huge Sonic Boom. Am. Meteorol. Soc. 2019. Available online: https://www.amsmeteors.org/2019/02/meteorite-hits-cuba-with-huge-sonic-boom/ (accessed on 12 February 2019).
- Rumpf, C.M. Cuba Meteor Twitter Threat. Twitter.Com. 2019. Available online: https://twitter.com/CMRumpf/status/1091738191202213890 (accessed on 12 February 2019).
- Rudlosky, S.D.; Goodman, S.J.; Virts, K.S.; Bruning, E.C. Initial Geostationary Lightning Mapper Observations. Geophys. Res. Lett. 2018, 45. [Google Scholar] [CrossRef]
Closeness Aspect | Value |
---|---|
Spatial separation in longitude | ≤0.05° |
Spatial separation in latitude | ≤0.05° |
Temporal separation | ≤0.2 s |
Filter | Parameter a | Parameter b |
---|---|---|
Group Count | 0.07 | 25 |
Line Fit | 3 | −5 |
Energy Balance | 25 | 0.3 |
Max Group to Line Distance | 80 | 0.4 |
Polynomial Fit | 3 | −2 |
Duration | 2 | 6 |
Date (YY/MM/DD) Time (UT) | Latitude (degree) | Longitude (degree) | Duration (s) | Lightcurve Energy (J) | Observation Data |
---|---|---|---|---|---|
18/11/1 18:36:44 | 51.0N | 58.9W | 0.462 | 1.05E-11 | GLM-16 |
18/11/3 12:36:21 | 5.0N | 102.3W | 0.155 | 1.49E-12 | GLM-16 |
18/11/11 7:58:29 | 34.1N | 35.6W | 0.078 | 7.25E-13 | GLM-16 |
18/11/12 4:58:15 | 29.1N | 85.9W | 0.837 | 2.09E-12 | GLM-16, all-sky |
18/11/15 8:02:44 | 42.4N | 52.8W | 0.877 | 1.33E-10 | USG, GLM-16 |
18/11/20 12:17:52 | 34.9N | 118.4W | 0.36 | 9.55E-12 | GLM-16, GLM-17, all-sky |
18/11/22 13:10:46 | 33.1N | 122.2W | 0.324 | 1.14E-11 | GLM-16, GLM-17, all-sky |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumpf, C.M.; Longenbaugh, R.S.; Henze, C.E.; Chavez, J.C.; Mathias, D.L. An Algorithmic Approach for Detecting Bolides with the Geostationary Lightning Mapper. Sensors 2019, 19, 1008. https://doi.org/10.3390/s19051008
Rumpf CM, Longenbaugh RS, Henze CE, Chavez JC, Mathias DL. An Algorithmic Approach for Detecting Bolides with the Geostationary Lightning Mapper. Sensors. 2019; 19(5):1008. https://doi.org/10.3390/s19051008
Chicago/Turabian StyleRumpf, Clemens M., Randolph S. Longenbaugh, Christopher E. Henze, Joseph C. Chavez, and Donovan L. Mathias. 2019. "An Algorithmic Approach for Detecting Bolides with the Geostationary Lightning Mapper" Sensors 19, no. 5: 1008. https://doi.org/10.3390/s19051008
APA StyleRumpf, C. M., Longenbaugh, R. S., Henze, C. E., Chavez, J. C., & Mathias, D. L. (2019). An Algorithmic Approach for Detecting Bolides with the Geostationary Lightning Mapper. Sensors, 19(5), 1008. https://doi.org/10.3390/s19051008