Next Article in Journal
Feasibility Study of Enhancing Microwave Brain Imaging Using Metamaterials
Next Article in Special Issue
Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU
Previous Article in Journal
Optical-Resolution Photoacoustic Microscopy Using Transparent Ultrasound Transducer
Previous Article in Special Issue
WaistonBelt X: A Belt-Type Wearable Device with Sensing and Intervention Toward Health Behavior Change
Open AccessArticle

Hydrophobic Paper-Based SERS Sensor Using Gold Nanoparticles Arranged on Graphene Oxide Flakes

by Dong-Jin Lee 1 and Dae Yu Kim 1,2,*
1
Inha Research Institute for Aerospace Medicine, Inha University, Incheon 22212, Korea
2
Department of Electrical Engineering, College of Engineering, Inha University, Incheon 22212, Korea
*
Author to whom correspondence should be addressed.
Sensors 2019, 19(24), 5471; https://doi.org/10.3390/s19245471
Received: 1 November 2019 / Revised: 9 December 2019 / Accepted: 9 December 2019 / Published: 11 December 2019
(This article belongs to the Special Issue Wearable Sensors and Systems in the IOT)
Paper-based surface-enhanced Raman scattering (SERS) sensors have garnered much attention in the past decade owing to their ubiquity, ease of fabrication, and environmentally friendly substrate. The main drawbacks of a paper substrate for a SERS sensor are its high porosity, inherent hygroscopic nature, and hydrophilic surface property, which reduce the sensitivity and reproducibility of the SERS sensor. Here, we propose a simple, quick, convenient, and economical method for hydrophilic to hydrophobic surface modification of paper, while enhancing its mechanical and moisture-resistant properties. The hydrophobic paper (h-paper) was obtained by spin-coating diluted polydimethylsiloxane (PDMS) solution onto the filter paper, resulting in h-paper with an increased contact angle of up to ≈130°. To complete the h-paper-based SERS substrate, gold nanoparticles arranged on graphene oxide ([email protected]) were synthesized using UV photoreduction, followed by drop-casting of [email protected] solution on the h-paper substrate. The enhancement of the SERS signal was then assessed by attaching a rhodamine 6G (R6G) molecule as a Raman probe material to the h-paper-based SERS substrate. The limit of detection was 10 nM with an R2 of 0.966. The presented SERS sensor was also tested to detect a thiram at the micromolar level. We expect that our proposed [email protected]/h-paper-based SERS sensor could be applied to point-of-care diagnostics applications in daily life and in spacecraft. View Full-Text
Keywords: hydrophobic paper; graphene oxide; surface-enhanced Raman scattering (SERS); gold nanoparticles arranged on graphene oxide flakes ([email protected]) hydrophobic paper; graphene oxide; surface-enhanced Raman scattering (SERS); gold nanoparticles arranged on graphene oxide flakes ([email protected])
Show Figures

Figure 1

MDPI and ACS Style

Lee, D.-J.; Kim, D.Y. Hydrophobic Paper-Based SERS Sensor Using Gold Nanoparticles Arranged on Graphene Oxide Flakes. Sensors 2019, 19, 5471.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop