Longest-Range UHF RFID Sensor Tag Antenna for IoT Applied for Metal and Non-Metal Objects †
Abstract
:1. Introduction
2. Cavity Structure
3. Review on Long-Range UHF RFID Tag Antenna
4. Antenna Design and Read-Range Calculation
4.1. Impedance Matching and Antenna Gain
4.2. Read-Range Calculation
- is the chip’s sensitivity, in other words, the minimum threshold power for a tag to respond to the reader’s request. We used alien’s Higgs 4 chip which operates in the frequency range of 840–960 MHz and have −20.5 dBm sensitivity during read. So becomes:
- is the power transmission coefficient and determines how good the tag antenna and chip are matched. It is given by the Equation (8):
4.3. Reader-To-Tag and Tag-To-Reader RF Power Transfer
4.4. Fabrication and Result of Long-Range RFID Tag
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Finkenzeller, K. RFID Handbook, 2nd ed.; John Wiey & Sons: West Sussex, UK, 2003; pp. 341–392. [Google Scholar]
- Huang, Y.; Boyle, K. Antenna from Theory to Practise; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 339–351. [Google Scholar]
- Amato, F.; Peterson, C.W.; Akbar, M.B.; Durgin, G.D. Long range and low powered RFID tags with tunnel diode. In Proceedings of the 2015 IEEE International Conference on RFID Technology and Applications (RFID-TA), Tokyo, Japan, 16–18 September 2015; pp. 182–187. [Google Scholar]
- Amato, F.; Torun, H.M.; Durgin, G.D. Beyond the limits of classic backscattering communications: A quantum tunneling RFID tag. In Proceedings of the 2017 IEEE International Conference on RFID, Phoenix, AZ, USA, 9–11 May 2017; pp. 20–25. [Google Scholar]
- Amato, F.; Torun, H.M.; Durgin, G.D. RFID backscattering in long-range scenarios. IEEE Trans. Wirel. Commun. 2018, 17, 2718–2725. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, Z.; Gao, N.; Meng, Z.; Li, Z. Radio frequency identification and sensing techniques and their applications—A review of the state-of-the-art. Sensors 2019, 19, 4012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Tian, G.Y.; Marindra, A.M.J.; Sunny, A.I.; Zhao, A.B. A review of passive RFID tag antenna-based sensors and systems for structure health monitoring applications. Sensors 2017, 17, 265. [Google Scholar] [CrossRef] [PubMed]
- Oprea, A.; Bârsan, N.; Weimar, U.; Bauersfeld, M.L.; Ebling, D.; Wöllenstein, J. Capacitive humidity sensors on flexible RFID labels. Sens. Actuators B Chem. 2008, 132, 404–410. [Google Scholar] [CrossRef]
- Occhiuzzi, C.; Paggi, C.; Marrocco, G. Passive RFID strain-sensor based on meander-line antennas. IEEE Trans. Antennas Propag. 2011, 59, 4836–4840. [Google Scholar] [CrossRef] [Green Version]
- Rennane, A.; Abdelnour, A.; Kaddour, D.; Touhami, R.; Tedjini, S. Design of passive UHF RFID sensor on flexible foil for sports balls pressure monitoring. IET Microw. Antennas Propag. 2018, 12, 2154–2160. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, G.Y.; Zhao, A.B. Passive RFID sensor systems for crack detection & characterization. NDT&E Int. 2017, 86, 89–99. [Google Scholar]
- Caizzone, S.; DiGiampaolo, E. Passive RFID deformation sensor for concrete structures. In Proceedings of the 2014 IEEE RFID Technology and Applications Conference (RFID-TA), Tampere, Finland, 8–9 September 2014; pp. 127–130. [Google Scholar]
- Zarifi, M.H.; Deif, S.; Daneshmand, M. Wireless passive RFID sensor for pipeline integrity monitoring. Sens. Actuators A Phys. 2017, 261, 24–29. [Google Scholar] [CrossRef]
- Xiao, Z.; Tan, X.; Chen, X.; Chen, S.; Zhang, Z.; Zhang, H.; Wang, J.; Huang, Y.; Zhang, P.; Zheng, L.; et al. An implantable RFID sensor tag toward continuous glucose monitoring. IEEE J. Biomed. Health 2015, 19, 910–919. [Google Scholar] [CrossRef]
- Caldara, M.; Nodari, B.; Re, V.; Bonandrini, B. Miniaturized and low-power blood pressure telemetry system with RFID interface. Procedia Eng. 2014, 87, 344–347. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.; Naber, J. The Development of a RFID based mixed signal ASIC for the wireless measurement of intraocular pressure. In Proceedings of the 2010 18th Biennial University/Government/Industry Micro/Nano Symposium, West Lafayette, IN, USA, 28 June–1 July 2010; pp. 1–4. [Google Scholar]
- Caccami, M.C.; Mulla, M.Y.S.; Occhiuzzi, C.; Di Natale, C.; Marrocco, G. Design and experimentation of a batteryless on-skin RFID graphene-oxide sensor for the monitoring and discrimination of breath anomalies. IEEE Sens. J. 2018, 18, 8893–8901. [Google Scholar] [CrossRef]
- Lazaro, A.; Boada, M.; Villarino, R.; Girbau, D. Color measurement and analysis of fruit with a battery-less NFC sensor. Sensors 2019, 19, 1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemour, S.; Wu, K. Radio-frequency rectifier for electromagnetic energy harvesting: Development path and future outlook. Proc. IEEE 2014, 102, 1667–1691. [Google Scholar] [CrossRef]
- Zargham, M.; Gulak, P.G. Maximum achievable efficiency in near-field coupled power-transfer systems. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 228–245. [Google Scholar] [CrossRef] [PubMed]
- De Venuto, D.; Rabaey, J. RFID transceiver for wireless powering brain implanted microelectrodes and backscattered neural data collection. Microelectron. J. 2014, 45, 1585–1594. [Google Scholar] [CrossRef]
- Kimetya, B.F.; Suel, C.-H.; Chung, Y. Super long range small empty cavity UHF RFID tag antenna design for metal pallet. In Proceedings of the 2018 IEEE Region Ten Symposium (Tensymp), Sydney, Australia, 4–6 July 2018; pp. 145–148. [Google Scholar]
- Ferro, V.; Luz, A.; Lucrécio, A. Small long range UHF tag for metal applications. In Proceedings of the 2013 IEEE International Conference on RFID-Technology and Applications (RFID-TA), Johor Bahru, Malaysia, 4–5 September 2013; pp. 1–6. [Google Scholar]
- Mak, C.-L.; Xi, J. Low profile separable RFID tag antenna design for variable range applications. In Proceedings of the 2016 IEEE International Conference on RFID (RFID), Orlando, FL, USA, 3–5 May 2016; pp. 1–4. [Google Scholar]
- Chang, J.; Quan, S. Design of long range RFID tag in X-band based on modulated scattering technique. In Proceedings of the 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 16–19 October 2016; pp. 1–4. [Google Scholar]
- Islam, M.A.; Yap, Y.; Karmakar, N. ‘Δ’ slotted compact printable orientation insensitive chipless RFID tag for long range applications. In Proceedings of the 2016 9th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 20–22 December 2016; pp. 283–286. [Google Scholar]
- Lu, Y.; Basset, P.; Laheurte, J.-M. Performance evaluation of a long-range RFID tag powered by a vibration energy harvester. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1832–1835. [Google Scholar] [CrossRef]
- Ban, Y.; Kai, M. Analysis of planar RFID tag antenna for metallic objects by varying length of parasitic element. In Proceedings of the 2017 IEEE AP-S Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 2431–2432. [Google Scholar]
- Choudhary, A.; Sood, D.; Tripathi, C.C. Wideband long range, radiation efficient compact UHF RFID tag. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1755–1759. [Google Scholar] [CrossRef]
- Sharma, A.; Hoang, A.T.; Nekoogar, F.; Dowla, F.U.; Reynolds, M.S. An electrically small, 16.7 m range, ISO18000-6C UHF RFID tag for industrial radiation sources. IEEE J. Radio Freq. Identif. 2018, 2, 49–54. [Google Scholar] [CrossRef]
- Kimetya, B.F.; Suel, C.-H.; Chung, Y. Comparison of long range UHF RFID metal pallet tags for auto-parts logistic system. In Proceedings of the 2018 International Conference on Electronics, Information, and Communication (ICEIC), Auckland, New Zealand, 9–23 November 2018; pp. 1–4. [Google Scholar]
- CST Studio Suite-Electromagnetic Field Simulation Software. Available online: www.cst.com (accessed on 8 December 2019).
- Srikant, S.S.; Mahapatra, R.P. Read range of UHF passive RFID. Int. J. Comput. Theory Eng. 2010, 2, 323–325. [Google Scholar] [CrossRef]
- Gao1, Y.; Zhang, Z.; Lu, H.; Wang, H. Calculation of read distance in passive backscatter RFID systems and application. J. Syst. Manag. Sci. 2012, 2, 40–49. [Google Scholar]
- Nikitin, P.V.; Rao, K.V.S.; Lazar, S. Antenna design for UHF RFID tags: A review and a practical application. IEEE Trans. Antennas Propag. 2005, 53, 3870–3876. [Google Scholar]
- Nikitin, P.V.; Rao, K.V.S. Theory and measurement of backscattering from RFID tags. IEEE Antennas Propag. Mag. 2006, 48, 212–218. [Google Scholar] [CrossRef]
- AN 1629 UHF RFID Label Antenna Design. Available online: https://www.nxp.com/docs/en/applicationnote/AN162910.pdf (accessed on 25 October 2019).
- Nikitin, P.V.; Rao, K.V.S.; Lazar, S. An overview of near field UHF RFID. In Proceedings of the 2007 IEEE International Conference on RFID, Grapevine, TX, USA, 26–28 March 2007; pp. 167–174. [Google Scholar]
No | Reference | Frequency (GHz)/Size (mm) | Read-Range (m) | Tag or Chip/Sensitivity | Technology |
---|---|---|---|---|---|
1 | Paper [23] | 0.908/155 × 110 | 10 | Not described | Metal tag antenna |
2 | Paper [24] | 0.920–0.925/credit card size; 0.860–0.960/credit card size | 10; 5 | Alien-9768 | Alien-9768 |
3 | Paper [25] | 9.75/NA | 10 | RCS of 21 dB | Modulated scattering |
4 | Paper [26] | 6.2/NA | Simulated | Chip less | Chip less |
5 | Paper [27] | 0.868/Na | 15 | EM4324 | L-matched RFID tag |
6 | Paper [28] | 0.878/Na | Simulated | Not described | Planar metal tag |
7 | Paper [29] | 0.866/89.5 × 25 | 18 | Higgs 4 −20.5 dBm | Wide band tag antenna |
8 | Paper [30] | 0.9125/41 in diameter and 6.48 thick | 16.7 | −18 dBm | C-shaped loop |
9 | Paper [31] | 0.915, 0.92/140 × 60 × 10 | 12 | Higgs 3/−20 dBm | Cavity and bottom metal |
10 | Proposed | 0.915, 0.92/140 × 60 × 10 | 26 | Higgs 4 −20.5 dBm | Cavity type Metal tag |
Parameters | Size (mm) | Parameters | Size (mm) |
---|---|---|---|
ant_w | 47.5 | cavity height | 10 |
ant_h | 5–10 | gap | 1 |
tmat_h | 2 | circle diameter | 5 |
tmat_w | 100 | mat_h | 8 |
loop_h | 50 | mat_w | 80 |
loop_w | 15 | mloop_h | 20 |
port_w | 2 | mloop_w | 5 |
ant_L | 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byondi, F.K.; Chung, Y. Longest-Range UHF RFID Sensor Tag Antenna for IoT Applied for Metal and Non-Metal Objects. Sensors 2019, 19, 5460. https://doi.org/10.3390/s19245460
Byondi FK, Chung Y. Longest-Range UHF RFID Sensor Tag Antenna for IoT Applied for Metal and Non-Metal Objects. Sensors. 2019; 19(24):5460. https://doi.org/10.3390/s19245460
Chicago/Turabian StyleByondi, Franck Kimetya, and Youchung Chung. 2019. "Longest-Range UHF RFID Sensor Tag Antenna for IoT Applied for Metal and Non-Metal Objects" Sensors 19, no. 24: 5460. https://doi.org/10.3390/s19245460
APA StyleByondi, F. K., & Chung, Y. (2019). Longest-Range UHF RFID Sensor Tag Antenna for IoT Applied for Metal and Non-Metal Objects. Sensors, 19(24), 5460. https://doi.org/10.3390/s19245460