Intelligent Sensor-Cloud in Fog Computer: A Novel Hierarchical Data Job Scheduling Strategy
Abstract
:1. Introduction
2. Related Works
- (1)
- Setting the dynamic priority to guarantee the scheduling fairness.
- (2)
- Allowing the work whose priority is low and whose source requirement is small to run in advance to guarantee the adequate usage of the source, which also preserves the source for the work whose priority is high or whose requirement of source is big, and which also prevents situations of work starvation and reduction of source fragments.
- (3)
- The mission will send the frame sequence to the unit by way of making the unit the source particle size basic unit, based on scene geometry to choose the key frame, using the feedback of the source occupying information of the key frame and the related feature of between the frames. It combines the distributing strategy among the frames to render the work load between the nodes in balance.
3. Job Scheduling Level Method
3.1. Basic Concept
3.2. Constraint Conditions for Data Jobs
- (1)
- The memory of all the processes running on the unit does not exceed the physical memory capacity of the node,In addition, it is also a computationally intensive application processor; task switching overhead will usually offset the boost processor sharing performance and even lead to performance decline. Therefore, the unit partition strategy should satisfy the following constraints:
- (2)
- The sum of the number of threads that run on the unit cannot exceed the number of processors in the node,
3.3. Data Job Scheduling
- (1)
- First of all, it is based on the key frame before rendering the granularity of the resources.
- (2)
- Secondly, the correlation based on frame will render the frame sequence assigned to the unit.
- (3)
- Finally, combined with intra partition strategy, it will not be divisible by the number of the remaining frames unit assigned to the unit.
Algorithm 1 Hierarchical Job Scheduling Strategy |
Input: Wait for scheduling job queue |
Output: Job scheduling sequence |
1. Set flag = 0; |
2. Sort jobs in SJobs by priority from high to low; |
3. for each Ji in SJobs do |
4. if NumJi <= freeNum then |
5. Allocate the free CPUs to Ji; |
6. Update the state of CPUs and Rjobs; |
7 if flag ==1 then |
8. Set Ji as fill-in job and corresponding CPUs as reservation CPUs; |
9. Update order N; |
10. endif |
11. break |
12. else |
13. if NumJi > freeN && NumJi <= (freeN + orderN) then |
14. Select jobs paused in IJobs and put them to bJobs; |
15. Select CPUs corresponding to jobs in bJobs and put them to bCs; |
16. Update bCsN; |
17. if bCs ! = NULL then |
19. Change the state of CPUs to free and CPUs as no reservation CPUs; |
20. Update freeN, orderN; |
21. endif |
22. endif |
22. if NumJi <= freeN then |
23. Allocate the free CPUs to Ji and update the state of CPUs; |
24. Update busyN; |
25. if flag == 1 then |
26. Set Ji as fill-in job and corresponding CPUs as reservation CPUs; |
27. Update orderN; |
28. |
29. endif |
30. endif |
33. flag = 1; |
34. endfor |
4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, Z.Y.; Wang, H.H.; Liu, B.L.; Li, C.F.; Pan, X.Y.; Nie, Y.L. CS-FCDA: A compressed sensing-based on fault-tolerant data aggregation in sensor networks. Sensors 2018, 18, 3749. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, L.F.; Diaz-Montes, J.; Buyya, R.; Rana, O.F.; Rarashar, M. Mobility-aware application scheduling in fog computing. IEEE Cloud Comput. 2017, 4, 26–35. [Google Scholar] [CrossRef]
- Bitam, S.; Zeadally, S.; Mellouk, A. Fog computing job scheduling optimization based on bees swarm. Enterp. Inf. Syst. 2018, 12, 373–397. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.X.; Liu, A.F.; Alam Bhuiyan, M.Z.; Jin, Q. A Secure IoT Service architecture with an efficient balance dynamics based on cloud and edge computing. IEEE Internet Things J. 2019, 6, 4831–4843. [Google Scholar] [CrossRef]
- Zhang, G.X.; Wang, T.; Wang, G.J.; Liu, A.F.; Jia, W.J. Detection of hidden data attacks combined fog computing and trust evaluation method in sensor-cloud systems. Concurr. Comp. Pract. E. 2018. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Liu, J.; Xing, X.F.; Li, C.F.; Pan, X.Y. A dynamic cluster job scheduling optimization algorithm based on data irreversibility in sensor networks. Int. J. Embedded Syst. 2019, 11, 551–561. [Google Scholar] [CrossRef]
- Li, Q.; Wu, W.G.; Sun, Z.Y.; Wang, L.; Huang, J.H.; Zhou, X.X. A novel hierarchal scheduling strategy for rendering system. In Proceedings of the International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI 2015), Beijing, China, 22–23 October 2015; pp. 206–209. [Google Scholar]
- Liu, X.X.; Qiu, T.; Zhou, X.B.; Wang, T.; Yang, L.; Chang, V. Latency-aware anchor-point deployment for disconnected sensor networks with mobile sinks. IEEE Trans. Ind. Inf. 2019. [Google Scholar] [CrossRef]
- Liu, X.M.; Guo, Y.; Li, W.; Hua, M.; Ding, E.J. A complete feasible and nodes-grouped scheduling algorithm for wireless rechargeable sensor networks in tunnels. Sensors 2018, 18, 3410. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Lv, Z.G.; Hou, Y.; Xu, C.; Yan, B. MR-DFM: A multi-path routing algorithm based on data fusion mechanism in sensor networks. Comput. Sci. Inf. Syst. 2019, 16, 867–890. [Google Scholar] [CrossRef]
- Li, Q.; Wu, W.G.; Zhou, X.X.; Sun, Z.Y.; Huang, J.H. R-FirstFit: A reservation based firstfit priority job scheduling strategy and its application for rendering. In Proceedings of the 17th IEEE International Conference on Computation Science and Engineering (CSE 2014), Chengdu, China, 19–21 December 2014; pp. 1078–1085. [Google Scholar]
- Stavrinides, G.L.; Karatza, H.D. A hybrid approach to scheduling real-time IoT workflows in fog and cloud environments. Multimed. Tools. Appl. 2019, 78, 24639–24655. [Google Scholar] [CrossRef]
- Biason, A.; Pielli, C.; Zanella, A.; Zorzi, M. Access control for IoT nodes with energy and fidelity constraints. IEEE Trans. Wirel. Commun. 2018, 17, 3242–3257. [Google Scholar] [CrossRef]
- Wang, T.; Luo, H.; Zheng, X.; Xie, M.D. Crowdsourcing mechanism for trust evaluation in CPCS based on intelligent mobile edge computing. ACM Trans. Intel. Syst. Tec. 2019, 10. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Wei, L.L.; Song, B.; Nie, Y.L.; Shao, H.X. Mobile intelligent computing in internet of things: An optimized data gathering method based on compressive sensing. IEEE Access 2019, 7, 66110–66122. [Google Scholar] [CrossRef]
- Lyu, X.C.; Ni, W.; Tian, H.; Liu, R.P.; Wang, X.; Giannakis, G.B.; Paulraj, A. Distributed online optimization of fog computing for selfish devices with out-of-data information. IEEE Trans. Wirel. Commun. 2018, 17, 7704–7717. [Google Scholar] [CrossRef]
- Wang, T.; Ke, H.X.; Zheng, X.; Wang, K.; Sangaiah, A.K.; Liu, A.F. Big data cleaning based on mobile edge computing in industrial sensor-cloud. IEEE Trans. Ind. Inf. 2019. [Google Scholar] [CrossRef]
- Sthapit, S.; Thompson, J.; Robertson, N.M.; Hopgood, J.R. Computational load balancing on the edge in absence of cloud and fog. IEEE Trans. Mob. Comput. 2019, 18, 1499–1512. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.X.; Alam Bhuiyan, M.Z.; Liu, A.F.; Jia, W.J.; Xie, M.D. A novel trust mechanism based on fog computing in sensor-cloud system. Future Gener. Comput. Syst. 2018. [Google Scholar] [CrossRef]
- Zeng, D.Z.; Gu, L.; Guo, S.; Cheng, Z.X.; Yu, S. Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded systems. IEEE Trans. Comput. 2016, 65, 3702–3712. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, J.Y.; Liu, A.F.; Alam Bhuiyan, M.Z.; Wang, G.J.; Jia, W.J. Fog-based computing and storage offloading for data synchronization in IoT. IEEE Internet Things J. 2019, 6, 4272–4282. [Google Scholar] [CrossRef]
- Wang, X.L.; Veeravalli, B.; Rana, O.F. An optimal task-scheduling strategy for large-scale astronomical workloads using in-transit computation model. Int. J. Comput. Int. Sys. 2018, 11, 600–607. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, K.L.; Zhang, G.W.; Chen, X.; Luo, X.L.; Zhou, M.T. MEETS: Maximal energy efficient task scheduling in homogeneous fog networks. IEEE Internet Things J. 2018, 5, 4076–4087. [Google Scholar] [CrossRef]
- Wang, T.; Zeng, J.D.; Lai, Y.X.; Cai, Y.Q.; Tian, H.; Chen, Y.H.; Wang, B.W. Data collection from WSNs to the cloud based on mobile fog elements. Future Gener. Comput. Syst. 2017. [Google Scholar] [CrossRef]
- Wang, T.; Liang, Y.Z.; Jia, W.J.; Muhammad, A.; Liu, A.F.; Xie, M.D. Coupling resource management based on fog computing in smart city systems. J. Netw. Comput. Appl. 2019, 135, 11–19. [Google Scholar] [CrossRef]
- Liu, X.X.; Zhang, P.Y. Data drainage: A novel load balancing strategy for wireless sensor networks. IEEE Commun. Lett. 2018, 22, 125–128. [Google Scholar] [CrossRef]
- He, S.; Dong, M.X.; Ota, K.; Wu, J.; Li, J.H.; Li, G.L. Software-defined efficient service reconstruction in fog using content awareness and weighted graph. In Proceedings of the 2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Liu, Z.; Zhang, J.W.; Li, Y.N.; Bai, L.; Ji, Y.F. Joint jobs scheduling and lightpath provisioning in fog computing micro datacenter networks. J. Opt. Commun. Netw. 2018, 10, B152–B163. [Google Scholar] [CrossRef]
- Wang, T.; Qiu, L.; Sangaiah, A.K.; Xu, G.Q.; Liu, A.F. Energy-efficient and Trustworthy Data Collection Protocol Based on Mobile Fog Computing in Internet of Things. IEEE Trans. Ind. Informat. 2019. [Google Scholar] [CrossRef]
- Zhao, G.Z.; Gao, X.; Zheng, W.D.; Lv, Z.G. A novel optimization strategy for job scheduling based on double hierarchy. J. Eng. Sci. Technol. Rev. 2017, 10, 61–67. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Zhao, G.Z.; Li, M.; Lv, Z.G. Job performance optimization method based on data balance in the wireless sensor networks. Int. J. Online Eng. 2017, 13, 4–17. [Google Scholar] [CrossRef]
- Wang, T.; Luo, H.; Jia, W.J.; Liu, A.F.; Xie, M.D. An intelligent trust evaluation scheme in sensor-cloud enabled industrial internet of things. IEEE Trans.. Ind. Inform. 2019. [Google Scholar] [CrossRef]
- Liu, X.X. Node deployment based on extra path creation for wireless sensor networks on mountain roads. IEEE Commun. Lett. 2017, 21, 2376–2379. [Google Scholar] [CrossRef]
- Wu, Y.K.; Huang, N.Y.; Wang, Y.; Alam Bhuiyan, M.Z.; Wang, T. An incentive-based protection and recovery strategy for secure big data in social networks. Inf. Sci. 2020, 508, 79–91. [Google Scholar]
- Liu, X.X.; Wang, T.; Jia, W.J.; Liu, A.F.; Chi, K.K. Quick convex hull-based rendezvous planning for delay-harsh mobile data gathering in disjoint sensor networks. IEEE Trans. Syst. Man Cybern. B Cybern. 2019. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Ji, X.H. HDAC: High-dimensional data aggregation control algorithm for big data in wireless sensor networks. Int. J. Inf. Technol. Web. Eng. 2017, 12, 72–86. [Google Scholar] [CrossRef]
- Wan, J.F.; Chen, B.T.; Wang, S.Y.; Xia, M.; Li, D.; Liu, C.L. Fog computing for energy aware load balancing and scheduling in smart factory. IEEE Trans. Ind. Inf. 2018, 14, 4548–4556. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Li, L.X.; Xing, X.F.; Lv, Z.G.; Xiong, N.N. A novel nodes deployment assignment scheme with data association attributed in wireless sensor networks. J. Internet Technol. 2019, 20, 509–520. [Google Scholar]
- Li, Z.X.; Su, D.D.; Zhu, H.J.; Li, W.; Zhang, F.; Li, R.R. A fast synthetic aperture radar raw data simulation using cloud computing. Sensors 2017, 17, 113. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.X.; Qiu, T.; Wang, T. Load-balanced data dissemination for wireless sensor networks: A nature- Inspired approach. IEEE Internet Things J. 2019. [Google Scholar] [CrossRef]
- Shao, Y.L.; Li, C.L.; Fu, Z.; Jia, L.Y.; Luo, Y.L. Cost-effective replication management and scheduling in edge computing. J. Netw. Comput. Appl. 2019, 129, 46–61. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Tao, R.; Xiong, N.X.; Pan, X.Y. CS-PLM: Compressive sensing data gathering algorithm based on packet loss matching in sensor networks. Wirel. Commun. Mob. Comput. 2018. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Zhao, Z.M.; He, Z.X.; Xia, T.S. Measurement data classification optimization based on a novel evolutionary kernel clustering algorithm for multi-target tracking. IEEE Sens. J. 2018, 18, 3722–3733. [Google Scholar] [CrossRef]
- Hou, X.J.; Zhao, G.Z. Resource Scheduling and load balancing fusion algorithm with deep learning based on cloud computing. Int. J. Inf. Technol. Web. Eng. 2018, 13, 54–72. [Google Scholar] [CrossRef]
- Wang, T.; Alam Bhuiyan, M.D.Z.; Wang, G.J.; Rahman, M.A.; Wu, J.; Cao, J.N. Big data reduction for smart city’s critical infrastructural health monitoring. IEEE Commun. Mag. 2018, 56, 128–133. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Zhang, Y.S.; Nie, Y.L.; Wei, W.; Lloret, J.; Song, H.B. CASMOC: A novel complex alliance strategy with multi-objective optimization of coverage in wireless sensor networks. Wirel. Netw. 2017, 23, 1201–1222. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, D.; Cai, S.B.; Jia, W.J.; Liu, A.F. Bidirectional prediction based underwater data collection protocol for end-edge-cloud orchestrated system. IEEE Tran. Ind. Inform. 2019. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Zhao, G.Z.; Xing, X.F. ENCP: A new energy-efficient nonlinear coverage control protocol in mobile sensor networks. EURASIP J. Wirel. Commun. Netw. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.Y.; Guo, S.T.; Liu, J.D.; Yang, Y.Y. Energy-efficient computation offloading and resource allocation for delay-sensitive mobile edge computing. Sustainable Comput. Inf. Sys. 2019, 21, 154–164. [Google Scholar] [CrossRef]
- Wu, Y.K.; Huang, H.Y.; Wu, Q.; Liu, A.F.; Wang, T. A risk defense method based on microscopic state prediction with partial information observations in social networks. J. Parallel Distrib. Comput. 2019, 131, 189–199. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Li, C.; Wei, L.; Li, Z.; Min, Z.; Zhao, G. Intelligent Sensor-Cloud in Fog Computer: A Novel Hierarchical Data Job Scheduling Strategy. Sensors 2019, 19, 5083. https://doi.org/10.3390/s19235083
Sun Z, Li C, Wei L, Li Z, Min Z, Zhao G. Intelligent Sensor-Cloud in Fog Computer: A Novel Hierarchical Data Job Scheduling Strategy. Sensors. 2019; 19(23):5083. https://doi.org/10.3390/s19235083
Chicago/Turabian StyleSun, Zeyu, Chuanfeng Li, Lili Wei, Zhixian Li, Zhiyu Min, and Guozeng Zhao. 2019. "Intelligent Sensor-Cloud in Fog Computer: A Novel Hierarchical Data Job Scheduling Strategy" Sensors 19, no. 23: 5083. https://doi.org/10.3390/s19235083
APA StyleSun, Z., Li, C., Wei, L., Li, Z., Min, Z., & Zhao, G. (2019). Intelligent Sensor-Cloud in Fog Computer: A Novel Hierarchical Data Job Scheduling Strategy. Sensors, 19(23), 5083. https://doi.org/10.3390/s19235083