Improved Performance of Fundamental Mode Orthogonal Fluxgate Using a Micro-Patterned Meander-Shaped Ribbon Core
Abstract
:1. Introduction
2. Experimental Details
2.1. Micro-Patterned Core
2.2. Measurement System
3. Results and Discussion
3.1. Effect of the Number of Strips on the Performance
3.2. Comparison of the Single Strip and Meander-Shaped Cores
3.3. Comparison of Fundamental and Second-Harmonic Modes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ripka, P. Advances in fluxgate sensors. Sens. Actuators A Phys. 2003, 106, 8–14. [Google Scholar] [CrossRef]
- Kaluza, F.; Grüger, A.; Grüger, H. New and future applications of fluxgate sensors. Sens. Actuators A Phys. 2003, 106, 48–51. [Google Scholar] [CrossRef]
- Park, H.S.; Hwang, J.S.; Choi, W.Y.; Shim, D.S.; Na, K.W.; Choi, S.O. Development of micro-fluxgate sensors with electroplated magnetic cores for electronic compass. Sens. Actuators A Phys. 2004, 114, 224–229. [Google Scholar] [CrossRef]
- Grüger, H. Array of miniaturized fluxgate sensors for non-destructive testing applications. Sens. Actuators A Phys. 2003, 106, 326–328. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Zheng, W.; Guo, W.; Wang, Y.; Yan, R. Design and realization of a novel compact fluxgate current sensor. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Snoeij, M.F.; Schaffer, V.; Udayashankar, S.; Ivanov, M.V. Integrated fluxgate magnetometer for use in isolated current sensing. IEEE J. Solid-State Circuits 2016, 51, 1684–1694. [Google Scholar] [CrossRef]
- Dolabdjian, C.; Saez, S.; Toledo, A.R.; Robbes, D. Signal-to-noise improvement of bio-magnetic signals using a flux-gate probe and real time signal processing. Rev. Sci. Instrum. 1998, 69, 3678–3680. [Google Scholar] [CrossRef]
- Tomek, J.; Platil, A.; Ripka, P.; Kaspar, P. Application of fluxgate gradiometer in magnetopneumography. Sens. Actuators A Phys. 2006, 132, 214–217. [Google Scholar] [CrossRef]
- Ludwig, F.; Mäuselein, S.; Heim, E.; Schilling, M. Magnetorelaxometry of magnetic nanoparticles in magnetically unshielded environment utilizing a differential fluxgate arrangement. Rev. Sci. Instrum. 2005, 76, 106102. [Google Scholar] [CrossRef]
- Díaz-Michelena, M. Small magnetic sensors for space applications. Sensors 2009, 9, 2271–2288. [Google Scholar] [CrossRef]
- Li, X.P.; Zhao, Z.J.; Oh, T.B.; Seet, H.L.; Neo, B.H.; Koh, S.J. Current driven magnetic permeability interference sensor using NiFe/Cu composite wire with a signal pick-up LC circuit. Phys. Status Solidi A 2004, 201, 1992–1995. [Google Scholar] [CrossRef]
- Goleman, K.; Sasada, I. High sensitive orthogonal fluxgate magnetometer using a metglas ribbon. IEEE Trans. Magn. 2006, 42, 3276–3278. [Google Scholar] [CrossRef]
- Li, X.P.; Seet, H.L.; Fan, J.; Yi, J.B. Electrodeposition and characteristics of Ni80Fe20/Cu composite wires. J. Magn. Magn. Mater. 2006, 304, 111–116. [Google Scholar] [CrossRef]
- Butta, M.; Ripka, P.; Infante, G.; Badini-Confalonieri, G.A.; Vázquez, M. Bi-metallic magnetic wire with insulating layer as core for orthogonal fluxgate. IEEE Trans. Magn. 2009, 45, 4443–4446. [Google Scholar] [CrossRef]
- Sasada, I. Orthogonal fluxgate mechanism operated with dc biased excitation. J. Appl. Phys. 2002, 91, 7789–7791. [Google Scholar] [CrossRef]
- Sasada, I. Symmetric response obtained with an orthogonal fluxgate operating in fundamental mode. IEEE Trans. Magn. 2002, 38, 3377–3379. [Google Scholar] [CrossRef]
- Paperno, E. Suppression of magnetic noise in the fundamental-mode orthogonal fluxgate. Sens. Actuators A Phys. 2004, 116, 405–409. [Google Scholar] [CrossRef]
- Butta, M.; Yamashita, S.; Sasada, I. Reduction of noise in fundamental mode orthogonal fluxgates by optimization of excitation current. IEEE Trans. Magn. 2011, 47, 3748–3751. [Google Scholar] [CrossRef]
- Butta, M.; Sasada, I. Noise correlation in fundamental mode orthogonal fluxgate. J. Appl. Phys. 2012, 111, 07E517. [Google Scholar] [CrossRef]
- Butta, M.; Sasada, I. Sources of noise in a magnetometer based on orthogonal fluxgate operated in fundamental mode. IEEE Trans. Magn. 2012, 48, 1508–1511. [Google Scholar] [CrossRef]
- Jiles, D. Introduction to Magnetism and Magnetic Materials; CRC Press: Boca Raton, FL, USA, 2016; pp. 3–23. [Google Scholar]
- Ripka, P.; Li, X.P.; Fan, J. Multiwire core fluxgate. Sens. Actuators A Phys. 2009, 156, 265–268. [Google Scholar] [CrossRef]
- Ripka, P.; Butta, M.; Jie, F.; Li, X. Sensitivity and noise of wire-core transverse fluxgate. IEEE Trans. Magn. 2010, 46, 654–657. [Google Scholar] [CrossRef]
- Choi, S.M.; Lee, T.; Yang, C.S.; Shin, K.H.; Lim, S.H. Effects of lateral dimensions of the magnetic thin films on the characteristics of thin-film type orthogonal fluxgate sensors. Thin Solid Films 2014, 565, 271–276. [Google Scholar] [CrossRef]
- Butta, M.; Janosek, M.; Schutte, B.P.; Vazquez, M.; Perez, R.; Ramirez, E.C.; Jimenez, A. effect of amorphous wire core diameter on the noise of an orthogonal fluxgate. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar]
- Zorlu, O.; Kejik, P.; Popovic, R.S. An orthogonal fluxgate-type magnetic microsensor with electroplated Permalloy core. Sens. Actuators A Phys. 2007, 135, 43–49. [Google Scholar] [CrossRef]
- Zhi, S.; Lei, C.; Yang, Z.; Feng, Z.; Guo, L.; Zhou, Y. Effect of field annealing induced magnetic anisotropy on the performance of meander-core orthogonal fluxgate sensor. Phys. Status Solidi A 2018, 215, 1800400. [Google Scholar] [CrossRef]
- Sasada, I. Low-noise fundamental-mode orthogonal fluxgate magnetometer built with an amorphous ribbon core. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Butta, M.; Sasada, I. Orthogonal fluxgate with annealed wire core. IEEE Trans. Magn. 2012, 49, 62–65. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, S.; Feng, Z.; Lei, C. Improved Performance of Fundamental Mode Orthogonal Fluxgate Using a Micro-Patterned Meander-Shaped Ribbon Core. Sensors 2019, 19, 5058. https://doi.org/10.3390/s19235058
Zhi S, Feng Z, Lei C. Improved Performance of Fundamental Mode Orthogonal Fluxgate Using a Micro-Patterned Meander-Shaped Ribbon Core. Sensors. 2019; 19(23):5058. https://doi.org/10.3390/s19235058
Chicago/Turabian StyleZhi, Shaotao, Zhu Feng, and Chong Lei. 2019. "Improved Performance of Fundamental Mode Orthogonal Fluxgate Using a Micro-Patterned Meander-Shaped Ribbon Core" Sensors 19, no. 23: 5058. https://doi.org/10.3390/s19235058
APA StyleZhi, S., Feng, Z., & Lei, C. (2019). Improved Performance of Fundamental Mode Orthogonal Fluxgate Using a Micro-Patterned Meander-Shaped Ribbon Core. Sensors, 19(23), 5058. https://doi.org/10.3390/s19235058