An Ultraviolet Sensor and Indicator Module Based on p–i–n Photodiodes
Abstract
1. Introduction
2. Device Design and Processing
3. Device Characterization
4. Module Design and Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sang, L.; Liao, M.; Sumiya, M. A comprehensive review of semiconductor ultraviolet photodetectors from thin film to one-dimensional nanostructures. Sensors 2013, 13, 10482–10518. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Jiang, K.; Sun, X.; Guo, C. AlGaN photonics recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 2018, 10, 43–110. [Google Scholar] [CrossRef]
- Genicom Co. Available online: http://www.geni-uv.com/ (accessed on 3 May 2019).
- Zhang, Y.; Shen, S.-C.; Kim, H.J.; Choi, S.; Ryou, J.-H.; Dupuis, R.D.; Narayan, B. Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates. Appl. Phys. Lett. 2009, 94, 221109. [Google Scholar] [CrossRef]
- Pereiro, J.; Rivera, C.; Navarro, A.; Munoz, E.; Czernecki, R.; Grzanka, S.; Leszczynski, M. Optimization of InGaN–GaN MQW Photodetector Structures for High-Responsivity Performance. IEEE J. Quantum Electron. 2009, 45, 617–622. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Yeh, P.S.; Huang, Y.-H.; Chen, Y.-T.; Huang, C.-W.; Lin, C.J.; Yeh, W. High Performance InGaN p-i-n Photodetectors Using LED Structure and Surface Texturing. IEEE Photon. Technol. Lett. 2016, 28, 605–608. [Google Scholar] [CrossRef]
- Mouillet, R.; Hirano, A.; Iwaya, M.; Detchprohm, T.; Amano, H.; Akasaki, I. Photoresponse and Defect Levels of AlGaN/GaN Heterobipolar Phototransistor Grown on Low-Temperature AlN Interlayer. Jpn. J. Appl. Phys. 2001, 40, L498–L501. [Google Scholar] [CrossRef]
- Lee, M.L.; Sheu, J.K.; Shu, Y.-R. Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistors with high optical gain and high rejection ratio. Appl. Phys. Lett. 2008, 92, 053506. [Google Scholar] [CrossRef]
- Yang, W.; Nohava, T.; Krishnankutty, S.; Torreano, R.; McPherson, S.; Marsh, H. High gain GaN/AlGaN heterojunction phototransistor. Appl. Phys. Lett. 1998, 73, 978–980. [Google Scholar] [CrossRef]
- Chang, S.J.; Lee, M.L.; Sheu, J.K.; Lai, W.C.; Su, Y.K.; Chang, C.S.; Kao, C.J.; Chi, G.C.; Tsai, J.M. GaN metal–semiconductor–metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts. IEEE Electron. Device Lett. 2003, 24, 212–214. [Google Scholar] [CrossRef]
- Huang, Z.-D.; Weng, W.-Y.; Chang, S.-J.; Hua, Y.-F.; Chiu, C.-J.; Hsueh, T.-J.; Wu, S.-L. InGaN/GaN Multiquantum-Well Metal-Semiconductor-Metal Photodetectors With Beta-Ga2O3 Cap Layers. IEEE Sens. J. 2013, 13, 1187–1191. [Google Scholar] [CrossRef]
- Shen, S.-C.; Zhang, Y.; Yoo, D.; Limb, J.-B.; Ryou, J.-H.; Yoder, P.D.; Dupuis, R.D. Performance of Deep Ultraviolet GaN Avalanche Photodiodes Grown by MOCVD. IEEE Photon. Technol. Lett. 2007, 19, 1744–1746. [Google Scholar] [CrossRef]
- Shen, S.-C.; Kao, T.-T.; Kim, H.-J.; Lee, Y.-C.; Kim, J.; Ji, M.-H.; Ryou, J.-H.; Detchprohm, T.; Dupuis, R.D. GaN/InGaN avalanche phototransistors. Appl. Phys. Express 2015, 8, 032101. [Google Scholar] [CrossRef]
- Chang, S.J.; Ko, T.K.; Su, Y.K.; Chiou, Y.Z.; Chang, C.S.; Shei, S.C.; Sheu, J.K.; Lai, W.C.; Lin, Y.C.; Chen, W.S.; et al. GaN-Based p-i-n Sensors with ITO Contacts. IEEE Sens. J. 2006, 6, 406–411. [Google Scholar] [CrossRef]
- Lin, J.C.; Su, Y.K.; Chang, S.J.; Lan, W.H.; Chen, W.R.; Huang, K.C.; Cheng, Y.C.; Lin, W.J. Low Dark Current GaN p–i–n Photodetectors With a Low-Temperature AlN Interlayer. IEEE Photon. Technol. Lett. 2008, 20, 1255–1257. [Google Scholar] [CrossRef]
- Butun, B.; Tut, T.; Ulker, E.; Yelboga, T.; Ozbay, E. High-performance visible-blind GaN-based p-i-n photodetectors. Appl. Phys. Lett. 2008, 92, 033507. [Google Scholar] [CrossRef]
- Su, Y.K.; Lee, H.C.; Lin, J.C.; Huang, K.C.; Lin, W.J.; Li, T.C.; Chang, K.J. In0.11Ga0.89N-based p-i-n photodetector. Phys. Stat. Sol. C 2009, 6, S811–S813. [Google Scholar] [CrossRef]
- Hou, J.-L.; Chang, S.-J.; Chen, M.-C.; Liu, C.H.; Hsueh, T.-J.; Sheu, J.-K.; Li, S. GaN-Based Planar p-i-n Photodetectors With the Be-Implanted Isolation Ring. IEEE Trans. Electron. Dev. 2013, 60, 1178–1182. [Google Scholar] [CrossRef]
- Wang, G.; Lu, H.; Chen, D.; Ren, F.; Zhang, R.; Zheng, Y. High Quantum Efficiency GaN-Based p-i-n Ultraviolet Photodetectors Prepared on Patterned Sapphire Substrates. IEEE Photon. Technol. Lett. 2013, 25, 652–654. [Google Scholar] [CrossRef]
- Rivera, C.; Pau, J.L.; Naranjo, F.B.; Muñoz, E. Novel photodetectors based on InGaN/GaN multiple quantum wells. Phys. Stat. Sol. (A) 2004, 201, 2658–2662. [Google Scholar] [CrossRef]
- Limb, J.B.; Yoo, D.; Ryou, J.H.; Lee, W.; Shen, S.C.; Dupuis, R.D.; Reed, M.L.; Collins, C.J.; Wraback, M.; Hanser, D.; et al. GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 2006, 89, 011112. [Google Scholar] [CrossRef]
- McIntosh, K.A.; Molnar, R.J.; Mahoney, L.J.; Lightfoot, A.; Geis, M.W.; Molvar, K.M.; Melngailis, I.; Aggarwal, R.L.; Goodhue, W.D.; Choi, S.S.; et al. GaN avalanche photodiodes grown by hydride vapor-phase epitaxy. Appl. Phys. Lett. 1999, 75, 3485–3487. [Google Scholar] [CrossRef]
- Yang, B.; Li, T.; Collins, C.J.; Wang, S.; Carrano, J.C.; Dupuis, R.D.; Campbell, J.C.; Schurman, M.J.; Ferguson, I.A. Low Dark Current GaN Avalanche Photodiodes. IEEE J. Quantum Electron. 2000, 36, 1389–1391. [Google Scholar] [CrossRef]
- Verghese, S.; McIntosh, K.A.; Molnar, R.J.; Mahoney, L.J.; Aggarwal, R.L.; Geis, M.W.; Molvar, K.M.; Duerr, E.K.; Melngailis, I. GaN Avalanche Photodiodes Operating in Linear-Gain Mode and Geiger Mode. IEEE Trans. Electron. Devices 2001, 48, 502–511. [Google Scholar] [CrossRef]
- Carrano, J.C.; Lambert, D.J.H.; Eiting, C.J.; Collins, C.J.; Li, T.; Wang, S.; Yang, B.; Beck, A.L.; Dupuis, R.D.; Campbell, J.C. GaN avalanche photodiodes. Appl. Phys. Lett. 2000, 76, 924–926. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, L.; Wu, X.; Hao, Z.; Sun, C.; Xiong, B.; Luo, Y.; Han, Y.; Wang, J.; Li, H.; et al. A PMT-like high gain avalanche photodiode based on GaN/AlN periodically stacked structure. Appl. Phys. Lett. 2016, 109, 241105. [Google Scholar] [CrossRef]
- Kao, T.-T.; Kim, J.; Detchprohm, T.; Dupuis, R.D.; Shen, S.-C. High-responsivity GaN/InGaN heterojunction phototransistors. IEEE Photon. Technol. Lett. 2016, 28, 2035–2038. [Google Scholar] [CrossRef]
- Yeh, P.S.; Hsu, T.-P.; Chiu, Y.-C.; Yang, S.; Wu, C.-Y.; Liou, J.-S. III-nitride phototransistors fabricated on a light-emitting-diode epitaxial wafer. IEEE Photon. Technol. Lett. 2017, 29, 1679–1682. [Google Scholar] [CrossRef]
- Jiang, Z.; Atalla, M.R.M.; You, G.; Wang, L.; Li, X.; Liu, J.; Elahi, A.M.; Wei, L.; Xu, J. Monolithic integration of nitride light emitting diodes and photodetectors for bi-directional optical communication. Opt. Lett. 2014, 39, 5657–5660. [Google Scholar] [CrossRef]
- Li, K.H.; Fu, W.Y.; Cheung, Y.F.; Wong, K.K.Y.; Wang, Y.; Lau, K.M.; Choi, H.W. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica 2018, 5, 564–569. [Google Scholar] [CrossRef]
- Li, K.H.; Cheung, Y.F.; Fu, W.Y.; Wong, K.K.Y.; Choi, H.W. Monolithic integration of GaN-on-sapphire light-emitting diodes, photodetectors, and waveguides. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 3801706. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Cai, W.; Gao, X.; Yang, Y.; Yuan, J.; Shi, Z.; Zhu, H. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides. Appl. Phys. Lett. 2016, 108, 162102. [Google Scholar] [CrossRef]
- Shi, Z.; Gao, X.; Yuan, J.; Zhang, S.; Jiang, Y.; Zhang, F.; Jiang, Y.; Zhu, H.; Wang, Y. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics. Appl. Phys. Lett. 2017, 111, 241104. [Google Scholar] [CrossRef]
- Liu, C.; Cai, Y.; Jiang, H.; Lau, K.M. Monolithic integration of III-nitride voltage controlled light emitters with dual-wavelength photodiodes by selective-area epitaxy. Opt. Lett. 2018, 43, 3401–3404. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Ide-Ektessabi, A.; Nomura, H.; Yasui, N. Characteristics of indium tin oxide thin films prepared using electron beam evaporation. Thin Solid Films 2004, 447–448, 115–118. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, Y.-C.; Yeh, P.S.; Wang, T.-H.; Chou, T.-C.; Wu, C.-Y.; Zhang, J.-J. An Ultraviolet Sensor and Indicator Module Based on p–i–n Photodiodes. Sensors 2019, 19, 4938. https://doi.org/10.3390/s19224938
Chiu Y-C, Yeh PS, Wang T-H, Chou T-C, Wu C-Y, Zhang J-J. An Ultraviolet Sensor and Indicator Module Based on p–i–n Photodiodes. Sensors. 2019; 19(22):4938. https://doi.org/10.3390/s19224938
Chicago/Turabian StyleChiu, Yu-Chieh, Pinghui Sophia Yeh, Tzu-Hsun Wang, Tzu-Chieh Chou, Cheng-You Wu, and Jia-Jun Zhang. 2019. "An Ultraviolet Sensor and Indicator Module Based on p–i–n Photodiodes" Sensors 19, no. 22: 4938. https://doi.org/10.3390/s19224938
APA StyleChiu, Y.-C., Yeh, P. S., Wang, T.-H., Chou, T.-C., Wu, C.-Y., & Zhang, J.-J. (2019). An Ultraviolet Sensor and Indicator Module Based on p–i–n Photodiodes. Sensors, 19(22), 4938. https://doi.org/10.3390/s19224938