Development of a Conductive Polymer Based Novel 1-DOF Tactile Sensor with Cylindrical Arch Spring Structure Using 3D Printing Technology †
Abstract
:1. Introduction
2. Elements of the Sensor and the Working Principle
3. Design and Development of the Tactile Sensor
3.1. Cylindrical Arch Spring Structure
3.1.1. Development of Cylindrical Arch Spring Structure
3.1.2. Fabrication of the Sensing Structure
3.2. The Sensing Element
3.2.1. Development of the Sensing Element
3.2.2. Fabrication of the Sensing Element
3.3. Electrodes
4. Results and Discussion
4.1. Characterisation of the Sensing Element
4.1.1. Mechanical Characterisation of the Sensing Element
4.1.2. Material Characterisation of the Sensing Element
4.2. Signal Conditioning and Data Acquisition
4.3. Characterisation of the Sensor
4.4. Communication
4.5. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Analogue to Digital Conversion |
EDAX | Energy-Dispersive X-Ray |
FEA | Finite Element Analysis |
RTV | Room Temperature Vulcanization |
SEM | Scanning Electron Microscope |
USB | Universal Serial Bus |
References
- Tiwana, M.I.; Redmond, S.J.; Lovell, N.H. A review of tactile sensing technologies with applications in biomedical engineering. Sens. Actuators A Phys. 2012, 179, 17–31. [Google Scholar] [CrossRef]
- Almassri, A.M.; Wan Hasan, W.Z.; Ahmad, S.A.; Ishak, A.J.; Ghazali, A.M.; Talib, D.N.; Wada, C. Pressure Sensor: State of the Art, Design, and Application for Robotic Hand. J. Sens. 2015, 2015, 1–12. [Google Scholar] [CrossRef]
- Cutkosky, M.R.; Howe, R.D.; Provancher, W.R. Force and Tactile Sensors; Springer: Berlin/Heidelberg, Germany, 2008; pp. 455–476. [Google Scholar]
- Lee, M.H.; Nicholls, H.R. Review Article Tactile sensing for mechatronics—A state of the art survey. Mechatronics 1999, 9, 1–31. [Google Scholar] [CrossRef]
- Lee, M.H. Tactile Sensing: New Directions, New Challenges. Int. J. Robot. Res. 2000, 19, 636–643. [Google Scholar] [CrossRef]
- Wettels, N.; Santos, V.J.; Johansson, R.S.; Loeb, G.E. Biomimetic Tactile Sensor Array. Adv. Robot. 2008, 22, 829–849. [Google Scholar] [CrossRef]
- Sanders, J.E.; Miller, R.A.; Berglund, D.N.; Zachariah, S.G. A modular six-directional force sensor for prosthetic assessment: A technical note. Bull. Prosthet. Res. 1997, 34, 195–202. [Google Scholar]
- Liu, C.; Fujimoto, Y.; Tanaka, Y. Flexible Impact Force Sensor. J. Sens. Technol. 2014, 4, 66–80. [Google Scholar] [CrossRef]
- Dahiya, R.S.; Valle, M. Tactile Sensing for Robotic Applications. In Sensors: Focus on Tactile Force and Stress Sensors; Gerardo, J., Lanceros-Mendez, S., Eds.; InTech: Vienna, Austria, 2008. [Google Scholar] [Green Version]
- Gerratt, A.P.; Sommer, N.; Lacour, S.P.; Billard, A. Stretchable capacitive tactile skin on humanoid robot fingers—First experiments and results. In Proceedings of the 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, Spain, 18–20 November 2014; pp. 238–245. [Google Scholar] [CrossRef]
- Lang, P. Optical Tactile Sensors for Medical Palpation; Canada-Wide Science Fair: St. John’s, NL, Canada, 2004. [Google Scholar]
- Shikida, M.; Shimizu, T.; Sato, K.; Itoigawa, K. Active tactile sensor for detecting contact force and hardness of an object. Sens. Actuators A Phys. 2003, 103, 213–218. [Google Scholar] [CrossRef]
- Udayanga, T.D.I.; Fernando, D.A.M.R.; Chaturanga, H.L.P.L.; Amarasinghe, Y.W.R.; Dao, D.V. Development of a Quantum Tunneling Composite based 1-DOF Tactile Sensor. Development 2015, 40, 99–104. [Google Scholar]
- Castellanos-Ramos, J.; Navas-González, R.; Macicior, H.; Sikora, T.; Ochoteco, E.; Vidal-Verdú, F. Tactile sensors based on conductive polymers. Microsyst. Technol. 2009, 16, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.C.; Schulkin, B.; Pulickal, M.J.; Liu, S.; Petrova, R.; Thomas, G.; Wagner, S.; Sidhu, K.; Federici, J.F. Flexible membrane pressure sensor. Sens. Actuators A Phys. 2005, 119, 332–335. [Google Scholar] [CrossRef]
- Palasagaram, J.N.; Ramadoss, R. MEMS-Capacitive Pressure Sensor Fabricated Using Printed-Circuit- Processing Techniques. IEEE Sens. J. 2006, 6, 1374–1375. [Google Scholar] [CrossRef]
- De Silva, A.H.T.E.; Sampath, W.H.P.; Sameera, N.H.L.; Udayanga, T.D.I.; Amarasinghe, Y.W.R.; Weragoda, V.S.C.; Mitani, A. Design and development of a novel 3D printed 1-DOF tactile sensor with conductive polymer based sensing element. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.S.; Lee, J.A.; Lee, K.C.; Ji, S. Carbon nanotube film piezoresistors embedded in polymer membranes. Appl. Phys. Lett. 2010, 96, 013511. [Google Scholar] [CrossRef]
- Amarasinghe, Y.; Kulasekera, A.; Priyadarshana, T. Quantum tunneling composite (QTC) based tactile sensor array for dynamic pressure distribution measurement. In Proceedings of the 2013 Seventh International Conference on Sensing Technology (ICST), Wellington, New Zealand, 3–5 December 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, T.; Inoue, Y.; Shibata, K. 3D force sensor designed using pressure sensitive electric conductive rubber. In Proceedings of the 2008 IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, 21–24 September 2008; pp. 166–170. [Google Scholar] [CrossRef]
- Chen, L.; Song, A. A novel three degree-of-freedom force sensor. In Proceedings of the International Conference on Measuring Technology and Mechatronics Automation, 2009, ICMTMA ’09, Zhangjiajie, China, 11–12 April 2009; Volume 1, pp. 77–80. [Google Scholar] [CrossRef]
- Song, A.; Wu, J.; Qin, G.; Huang, W. A novel self-decoupled four degree-of-freedom wrist force/torque sensor. Measurement 2007, 40, 883–891. [Google Scholar] [CrossRef]
- Shimizu, T.; Shikida, M.; Sato, K.; Itoigawa, K. A new type of tactile sensor detecting contact force and hardness of an object. In Proceedings of the Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 24 January 2002; pp. 344–347. [Google Scholar] [CrossRef]
- Liu, S.A.; Tzo, H.L. A novel six-component force sensor of good measurement isotropy and sensitivities. Sens. Actuators A Phys. 2002, 100, 223–230. [Google Scholar] [CrossRef]
- Leigh, S.J.; Bradley, R.J.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors. PLoS ONE 2012, 7, e49365. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wu, X.; Guo, X.; Kong, B.; Zhang, M.; Qian, X.; Mi, S.; Sun, W. The boom in 3D-printed sensor technology. Sensors 2017, 17, 1166. [Google Scholar] [CrossRef]
- Culha, U.; Nurzaman, S.G.; Clemens, F.; Iida, F. SVAS3: Strain vector aided sensorization of soft structures. Sensors 2014, 14, 12748–12770. [Google Scholar] [CrossRef]
- Rich, S.I.; Wood, R.J.; Majidi, C. Untethered soft robotics. Nat. Electron. 2018, 1, 102. [Google Scholar] [CrossRef]
- Ando, B.; Baglio, S. All-inkjet printed strain sensors. IEEE Sens. J. 2013, 13, 4874–4879. [Google Scholar] [CrossRef]
- Middleton, L.; Buss, A.A.; Bazin, A.; Nixon, M.S. A floor sensor system for gait recognition. In Proceedings of the Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID ’05), Buffalo, NY, USA, 17–18 October 2005; pp. 171–176. [Google Scholar] [CrossRef]
- Zeidler, F.; Petri, V.; Mickeler, R.; Meyer, M. Device for Detecting Seat Occupancy in a Motor Vehicle. U.S. Patent 5612876 A, 18 March 1997. [Google Scholar]
- Harada, T.; Sato, T.; Mori, T. Pressure distribution image based human motion tracking system using skeleton and surface integration model. In Proceedings of the 2001 ICRA IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Seoul, Korea, 21–26 May 2001; Volume 4, pp. 3201–3207. [Google Scholar] [CrossRef]
- Hutchings, B.L.; Petersen, R.J. Real-time control using tactile feedback and fuzzy logic. In Proceedings of the 1994 IEEE 3rd International Fuzzy Systems Conference, Orlando, FL, USA, 26–29 June 1994; Volume 2, pp. 1326–1331. [Google Scholar] [CrossRef]
- Matweb, L. ABSplus; Stratasys: Eden Prairie, MN, USA, 2016. [Google Scholar]
- Javelin Technologies Inc. ABSplus Production-Grade FDM 3D Printing Thermoplastic Material; Javelin Technologies Inc.: Oakville, ON, Canada, 2017. [Google Scholar]
- Matweb, L. ABS; Stratasys: Eden Prairie, MN, USA, 2016. [Google Scholar]
- PLA, Renewable Thermoplastic|Stratasys. 2017. Available online: https://www.stratasys.com/pla (accessed on 11 October 2017).
- Huang, Y.; Wang, M.; Qiu, H.; Xiang, B.; Zhang, Y. Research and Preparation Method of Flexible Tactile Sensor Material. In Sensors: Focus on Tactile Force and Stress Sensors; InTech: Vienna, Austria, 2008. [Google Scholar] [CrossRef] [Green Version]
- Ohmukai, M.; Kami, Y.; Matsuura, R. Electrode for Force Sensor of Conductive Rubber. J. Sens. Technol. 2012, 2, 127–131. [Google Scholar] [CrossRef]
- Amarasinghe, R.; Dao, D.V.; Dau, V.T.; Sugiyama, S. Ultra miniature novel three-axis micro accelerometer. In Proceedings of the 2009 IEEE Sensors, Christchurch, New Zealand, 25–28 October 2009; pp. 1305–1308. [Google Scholar] [CrossRef]
- De Silva, A.H.T.E.; Sampath, W.H.P.; Sameera, N.H.L.; Amarasinghe, Y.W.R.; Mitani, A. Development of a novel telecare system, integrated with plantar pressure measurement system. Inform. Med. Unlocked 2018, 12, 98–105. [Google Scholar] [CrossRef]
Geometry | Diameter D (mm) | Thickness H (mm) |
---|---|---|
| 15 | 4, 7 and 10 |
20 | 4, 7 and 10 |
Load (N) | Cycle 1 (mm) | Cycle 2 (mm) | Cycle 3 (mm) | Cycle 4 (mm) | Cycle 5 (mm) | Cycle 6 (mm) | Cycle 7 (mm) | Cycle 8 (mm) | Cycle 9 (mm) | Cycle 10 (mm) | Std. dev. |
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 0.94 | 0.83 | 0.86 | 0.82 | 0.93 | 0.71 | 0.95 | 0.91 | 0.90 | 0.79 | 0.077 |
10 | 1.29 | 1.19 | 1.21 | 1.23 | 1.33 | 1.13 | 1.25 | 1.23 | 1.27 | 1.17 | 0.060 |
15 | 1.69 | 1.60 | 1.56 | 1.54 | 1.63 | 1.45 | 1.75 | 1.66 | 1.60 | 1.51 | 0.089 |
20 | 2.10 | 2.04 | 1.95 | 1.99 | 2.05 | 1.93 | 2.14 | 2.04 | 2.00 | 1.94 | 0.068 |
25 | 3.05 | 2.93 | 2.98 | 2.94 | 3.06 | 2.83 | 3.04 | 3.01 | 3.02 | 2.90 | 0.076 |
30 | 3.79 | 3.62 | 3.68 | 3.61 | 3.78 | 3.44 | 3.79 | 3.74 | 3.73 | 3.56 | 0.117 |
35 | 4.65 | 4.57 | 4.54 | 4.52 | 4.59 | 4.44 | 4.71 | 4.62 | 4.56 | 4.49 | 0.077 |
40 | 5.52 | 5.45 | 5.38 | 5.43 | 5.50 | 5.36 | 5.53 | 5.46 | 5.44 | 5.37 | 0.061 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampath, P.; De Silva, E.; Sameera, L.; Udayanga, I.; Amarasinghe, R.; Weragoda, S.; Mitani, A. Development of a Conductive Polymer Based Novel 1-DOF Tactile Sensor with Cylindrical Arch Spring Structure Using 3D Printing Technology. Sensors 2019, 19, 318. https://doi.org/10.3390/s19020318
Sampath P, De Silva E, Sameera L, Udayanga I, Amarasinghe R, Weragoda S, Mitani A. Development of a Conductive Polymer Based Novel 1-DOF Tactile Sensor with Cylindrical Arch Spring Structure Using 3D Printing Technology. Sensors. 2019; 19(2):318. https://doi.org/10.3390/s19020318
Chicago/Turabian StyleSampath, Peshan, Eranga De Silva, Lakshitha Sameera, Isuru Udayanga, Ranjith Amarasinghe, Sampath Weragoda, and Atsushi Mitani. 2019. "Development of a Conductive Polymer Based Novel 1-DOF Tactile Sensor with Cylindrical Arch Spring Structure Using 3D Printing Technology" Sensors 19, no. 2: 318. https://doi.org/10.3390/s19020318
APA StyleSampath, P., De Silva, E., Sameera, L., Udayanga, I., Amarasinghe, R., Weragoda, S., & Mitani, A. (2019). Development of a Conductive Polymer Based Novel 1-DOF Tactile Sensor with Cylindrical Arch Spring Structure Using 3D Printing Technology. Sensors, 19(2), 318. https://doi.org/10.3390/s19020318