Al2O3-Based a-IGZO Schottky Diodes for Temperature Sensing
Abstract
:1. Introduction
2. Design and Fabrication
2.1. Diode Design
2.2. Equivalent Model of the Diode and Extracted Parameters
2.3. Device Fabrication
3. Results and Discussion
3.1. a-IGZO Schottky Diodes on Al2O3 Ceramics
3.2. High-Temperature Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, E.N. 4H-Silicon Carbide PN Diode for Harsh Environment Temperature Sensing Applications; University of California at Berkeley: Berkeley, CA, USA, 2014; pp. 1–2. [Google Scholar]
- Neudeck, P.G.; Okojie, R.S.; Chen, L.Y. High-temperature electronics—A role for wide bandgap semiconductors. Proc. IEEE 2002, 90, 1065–1076. [Google Scholar] [CrossRef]
- Shao, S.; Lien, W.C.; Maralani, A.; Pisano, A.P. Integrated 4H-silicon carbide diode bridge rectifier for high temperature (773 K) environment. In Proceedings of the 2014 44th European Solid State Device Research Conference (ESSDERC), Venice, Italy, 22–26 September 2014; pp. 138–141. [Google Scholar]
- Dipalo, M.; Gao, Z.; Scharpf, J.; Pietzka, C.; Alomari, M.; Medjdoub, F.; Carlin, J.F.; Grandjean, N.; Delage, S.; Kohn, E. Combining diamond electrodes with GaN heterostructures for harsh environment ISFETs. Diam. Relat. Mater. 2009, 18, 884–889. [Google Scholar] [CrossRef]
- Pearton, S.J.; Kang, B.S.; Kim, S.; Ren, F.; Gila, B.P.; Abernathy, C.R.; Lin, J.; Chu, S.N. GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J. Phys. 2004, 16, R961–R994. [Google Scholar] [CrossRef]
- So, H.; Hou, M.; Jain, S.R.; Lim, J.; Senesky, D.G. Interdigitated Pt-GaN Schottky interfaces for high-temperature soot-particulate sensing. Appl. Surf. Sci. 2016, 368, 104–109. [Google Scholar] [CrossRef]
- Hussain, T.; Micovic, M.; Tsen, T.; Delaney, M.; Chow, D.; Schmitz, A.; Hashimoto, P.; Wong, D.; Moon, J.S.; Hu, M.; et al. GaN HFET digital circuit technology for harsh environments. Electron. Lett. 2003, 39, 1708–1709. [Google Scholar] [CrossRef]
- So, H.; Senesky, D.G. Low-resistance gateless high electron mobility transistors using three-dimensional inverted pyramidal AlGaN/GaN surfaces. Appl. Phys. Lett. 2016, 108, 492–494. [Google Scholar] [CrossRef]
- Gregory, O.J.; Conkle, J.R.; Birnbaum, T.J. Wireless Temperature Measurement System and Methods of Making and Using Same. U.S. Patent US8348504, 29 October 2013. [Google Scholar]
- Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Yabuta, H.; Sano, M.; Abe, K.; Aiba, T.; Den, T.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hosono, H. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 2006, 89, 112123. [Google Scholar] [CrossRef]
- Nakata, M.; Takechi, K.; Eguchi, T.; Tokumitsu, E.; Yamaguchi, H.; Kaneko, S. Flexible high-performance amorphous InGaZnO4 thin-film transistors utilizing excimer laser annealing. Jpn. J. Appl. Phys. 2009, 48, 081607. [Google Scholar] [CrossRef]
- Lorenz, M.; Lajn, A.; Frenzel, H.; von Wenckstern, H.; Grundmann, M.; Barquinha, P.; Martins, R.; Fortunato, E. Low-temperature processed Schottky-gated field-effect transistors based on amorphous gallium-indium-zinc-oxide thin films. Appl. Phys. Lett. 2010, 97, 2007–2009. [Google Scholar] [CrossRef]
- Lee, D.H.; Nomura, K.; Kamiya, T.; Hosono, H. Diffusion-Limited a-IGZO/Pt Schottky Junction Fabricated at 200 °C on a Flexible Substrate. IEEE Electron Device Lett. 2011, 32, 1695–1697. [Google Scholar] [CrossRef]
- Chen, H.; Cao, Y.; Zhang, J.; Zhou, C. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wang, H.; Wilson, J.; Ma, X.; Jin, J.; Song, A. Room Temperature Processed Ultrahigh-Frequency Indium-Gallium–Zinc-Oxide Schottky Diode. IEEE Electron Device Lett. 2016, 37, 389–392. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Maeng, W.J.; Kim, H.S.; Park, J.S. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 2012, 520, 1679–1693. [Google Scholar] [CrossRef]
- Chasin, A.; Steudel, S.; Vanaverbeke, F.; Myny, K.; Nag, M.; Ke, T.H.; Schols, S.; Gielen, G.; Genoe, J.; Heremans, P. UHF IGZO Schottky diode. In Proceedings of the Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 12.4.1–12.4.4. [Google Scholar] [CrossRef]
- Chasin, A.; Nag, M.; Bhoolokam, A.; Myny, K.; Steudel, S.; Schols, S.; Genoe, J.; Gielen, G.; Heremans, P. Gigahertz operation of a-IGZO Schottky diodes. IEEE Trans. Electron Devices 2013, 60, 3407–3412. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, P.H.; Chang, T.C.; Chang, K.C.; Zhang, S.D.; Tsai, T.M.; Pan, C.H.; Chen, M.C.; Su, Y.T.; Tseng, Y.T.; et al. Attaining resistive switching characteristics and selector properties by varying forming polarities in a single HfO2-based RRAM device with a vanadium electrode. Nanoscale 2017, 9, 8586–8590. [Google Scholar] [CrossRef]
- Yim, J.R.; Jung, S.Y.; Yeon, H.W.; Kwon, J.Y.; Lee, Y.J.; Lee, J.H.; Joo, Y.C. Effects of metal electrode on the electrical performance of amorphous In–Ga–Zn–O thin film transistor. Jpn. J. Appl. Phys. 2012, 51, 011401. [Google Scholar] [CrossRef]
- Kamiya, T.; Hosono, H. Material characteristics and applications of transparent amorphous oxide, semiconductors. NPG Asia Mater. 2010, 2, 15–22. [Google Scholar] [CrossRef]
- Fuh, C.S.; Sze, S.M.; Liu, P.T.; Teng, L.F.; Chou, Y.T. Role of environmental and annealing conditions on the passivation-free in-Ga–Zn–O TFT. Thin Solid Films 2011, 520, 1489–1494. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Zhang, B.; Wang, H.; Xin, Q.; Song, A. Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz. Nat. Commun. 2015, 6, 7561. [Google Scholar] [CrossRef] [PubMed]
- Di Bartolomeo, A. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. Rev. Sect. Phys. Lett. 2016, 606, 1–58. [Google Scholar] [CrossRef] [Green Version]
- Takagi, A.; Nomura, K.; Ohta, H.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4. Thin Solid Films 2005, 486, 38–41. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Kikuchi, Y.; Hirano, M.; Hosono, H. Comprehensive studies on the stabilities of a-In-Ga-Zn-O based thin film transistor by constant current stress. Thin Solid Films 2010, 518, 3012–3016. [Google Scholar] [CrossRef]
- Hsieh, H.H.; Kamiya, T.; Nomura, K.; Hosono, H.; Wu, C.C. Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states. Appl. Phys. Lett. 2008, 92, 133503. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2, annealing. Appl. Phys. Lett. 2008, 93, 192107. [Google Scholar] [CrossRef]
- Kimura, M.; Nakanishi, T.; Nomura, K.; Kamiya, T.; Hosono, H. Trap densities in amorphous-InGaZnO4 thin-film transistors. Appl. Phys. Lett. 2008, 92, 133512. [Google Scholar] [CrossRef]
- Rhoderick, E.H.; Williams, R.H. Metal-Semiconductor Contacts, 2nd ed.; Oxford Univ. Press: Oxford, UK, 1988. [Google Scholar]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Chasin, A.; Steudel, S.; Myny, K.; Nag, M.; Ke, T.H.; Schols, S.; Genoe, J.; Gielen, G.; Heremans, P. High-performance a-In-Ga-Zn-O Schottky diode with oxygen-treated metal contacts. Appl. Phys. Lett. 2012, 101, 113505. [Google Scholar] [CrossRef]
- Olziersky, A.; Barquinha, P.; Vilà, A.; Magana, C.; Fortunato, E.; Morante, J.R.; Martins, R. Role of Ga2O3–In2O3–ZnO channel composition on the electrical performance of thin-film transistors. Mater. Chem. Phys. 2011, 131, 512–518. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Giubileo, F.; Luongo, G.; Iemmo, L.; Martucciello, N.; Niu, G.; Fraschke, M.; Skibitzki, O.; Schroeder, T.; Lupina, G. Tunable Schottky barrier and high responsivity in graphene/Sinanotip optoelectronic device. 2D Mater. 2017, 4, 015024. [Google Scholar] [CrossRef]
- Tataroglu, A.; Altindal, S. The analysis of the series resistance and interface states of MIS Schottky diodes at high temperatures using I–V characteristics. J. Alloys Compd. 2009, 484, 405–409. [Google Scholar] [CrossRef]
O2: (Ar + O2) | Element | Element Mass Ratio (%) | Elemental Atomic Ratios (%) |
---|---|---|---|
1% | In | 28.33 | 36.12 |
Ga | 17.34 | 36.42 | |
Zn | 12.26 | 27.46 | |
4% | In | 12.49 | 36.03 |
Ga | 6.93 | 32.94 | |
Zn | 6.11 | 31.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Lu, F.; Tan, Q.; Zhou, T.; Xiong, J.; Zhang, W. Al2O3-Based a-IGZO Schottky Diodes for Temperature Sensing. Sensors 2019, 19, 224. https://doi.org/10.3390/s19020224
Guo Q, Lu F, Tan Q, Zhou T, Xiong J, Zhang W. Al2O3-Based a-IGZO Schottky Diodes for Temperature Sensing. Sensors. 2019; 19(2):224. https://doi.org/10.3390/s19020224
Chicago/Turabian StyleGuo, Qianqian, Fei Lu, Qiulin Tan, Tianhao Zhou, Jijun Xiong, and Wendong Zhang. 2019. "Al2O3-Based a-IGZO Schottky Diodes for Temperature Sensing" Sensors 19, no. 2: 224. https://doi.org/10.3390/s19020224
APA StyleGuo, Q., Lu, F., Tan, Q., Zhou, T., Xiong, J., & Zhang, W. (2019). Al2O3-Based a-IGZO Schottky Diodes for Temperature Sensing. Sensors, 19(2), 224. https://doi.org/10.3390/s19020224