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Abstract: High-temperature electronic devices and sensors that operate in harsh environments,
especially high-temperature environments, have attracted widespread attention. An Al2O3 based
a-IGZO (amorphous indium-gallium-zinc-oxide) Schottky diode sensor is proposed. The diodes are
tested at 21–400 ◦C, and the design and fabrication process of the Schottky diodes and the testing
methods are introduced. Herein, a series of factors influencing diode performance are studied
to obtain the relationship between diode ideal factor n, the barrier height φB, and temperature.
The sensitivity of the diode sensors is 0.81 mV/◦C, 1.37 mV/◦C, and 1.59 mV/◦C when the forward
current density of the diode is 1 × 10−5 A/cm2, 1 × 10−4 A/cm2, and 1 × 10−3 A/cm2, respectively.
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1. Introduction

A harsh environment usually involves factors such as extreme temperature, high pressure,
and high shock. High-temperature electronics and sensors that can operate between 21 ◦C and
400 ◦C have drawn considerable attention owing to their wide applications in harsh environments.
Integrated sensing modules that can operate at high temperatures will be beneficial for many industrial
applications. A high-temperature integrated circuit is an important part of such systems, so it must
comprise diodes and transistors that can operate at high temperatures. The simplest device that can be
integrated with a circuit is based on semiconductor diodes [1].

It has already been proved that the application of some wide-bandgap semiconductor materials
overcome the defects of silicon materials, making semiconductor devices capable of operating at
temperatures above 300 ◦C [2]. Shao et al. [3] prepared a 4H-SiC-based P-N junction diode using
Ni/Ti and Al/Ti/Ni, respectively, with N- and P- 4H-SiC forming an ohmic contact with a forward
conduction voltage of 2.6 V at room temperature and 1.4 V at 500 ◦C at an average voltage drift
rate of 2.2 mV/K. Dipalo et al. describe a novel ISFET structure monolithically integrated with
an InAlN/GaN HEMT structure [4]. Pearton et al. prepared a sensor based on GaN and can
operate at 400 ◦C [5]. In addition to SiC, gallium nitride (GaN) is also widely used at harsh
environments [6–9]. Gregory et al., [10] at the University of Rhode Island in the United States,
proposed a thin-film temperature sensor based on a Schottky barrier diode that can be used to test
the surface temperature of an ultra-high temperature blade at 25–1100 ◦C. Among the available oxide
semiconductor films, amorphous indium-gallium-zinc-oxide (a-IGZO) is a preferred material for
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thin-film transistor (TFT) semiconductor layers because of its uniformity, compactness, the largest
channel mobility, reproducibility, high electron mobility, simple fabrication process, good stability,
and shows the most commercial potential [11–15].

Further, a-IGZO is a good amorphous semiconductor material as the internal physical properties
are isotropic. For a-IGZO with n > 1017 cm−3, when the temperature changes, the carrier concentration
is basically unchanged, indicating that the Fermi level (EF) has crossed the mobility edge. The Hall
voltage signal can be detected in the a-IGZO film with n > 1016 cm−3, indicating that the carrier is
not localized [16]. However, in the range of 1016 cm−3 < n < 1017 cm−3, the carrier concentration
is independent of temperature, but Hall mobility still exhibits thermal activation characteristics,
which means that there is a barrier above the mobility side [16,17]. Reducing the reverse-bias leakage
current of the Schottky diode increases sharply to the extent of thermal runaway with increasing
temperature. To date, most research on metal oxide semiconductors has focused on TFTs [18,19],
while research on diodes is scarce [15,20,21]. Therefore, a-IGZO is ideal for the electrical materials
used in harsh environments, especially at high temperature, due to its excellent electrical and physical
properties and wide bandgap energy (3.5 eV).

In this study, an a-IGZO Schottky diode functioning at high temperature is demonstrated and
experimentally characterized. The diode demonstrates stable operation within a temperature range
of 21 ◦C to 400 ◦C. The fabricated a-IGZO Schottky diode has a turn-on voltage of 0.64 V to 0.14 V,
with temperature rising from 21 ◦C to 400 ◦C.

2. Design and Fabrication

2.1. Diode Design

Here, we demonstrate what, to the best of our knowledge, is the first high-temperature a-IGZO
Schottky diode fabricated at room temperature and operating at 21–400 ◦C. First, we fabricated
Schottky diodes with different Schottky contact metals, a-IGZO layer thicknesses, and oxygen/argon
ratios during the sputtering deposition process of the a-IGZO film. The structure of the proposed
a-IGZO Schottky diode with a vertical design is illustrated in Figure 1 [22]. Next, we analyzed their
current–voltage (J–V) characteristics at room temperature. Second, the I–V characteristics were tested
at 21–400 ◦C in a vacuum environment using Lakeshore Model CRX-6.5K (Lake Shore Cryotronics, Inc.
Ohio, USA) and the dependence of turn-on voltage and equivalent resistance of the Schottky diode on
the temperature was obtained by analyzing the J–V characteristics.
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layer (pink); an a-IGZO layer (green) with a thickness of 30, 50, 100, or 150 nm; and an Al electrode 
(blue). 

2.2. Equivalent Model of the Diode and Extracted Parameters 

For fabrication and testing at much higher temperatures, we used Al2O3 ceramic as the substrate 
to fabricate the a-IGZO Schottky diodes to study the effects of some key parameters, such as direct 
current (DC), on the device. An aluminum (Al) electrode is used here as the ohmic contact because 
the work function of Al is only 4.2 eV and the contact resistance between Al and a-IGZO is known to 
be quite low [23]. The Aurum (Au) and platinum (Pt) electrodes are chosen as the Schottky contact 
due to their high work functions of 5.1 and 5.65 eV, respectively [24]. We measured the contact 

Figure 1. Structure of the a-IGZO Schottky diode. The device consists of a 50-nm-thick Schottky metal
layer (pink); an a-IGZO layer (green) with a thickness of 30, 50, 100, or 150 nm; and an Al electrode (blue).

2.2. Equivalent Model of the Diode and Extracted Parameters

For fabrication and testing at much higher temperatures, we used Al2O3 ceramic as the substrate
to fabricate the a-IGZO Schottky diodes to study the effects of some key parameters, such as direct
current (DC), on the device. An aluminum (Al) electrode is used here as the ohmic contact because the
work function of Al is only 4.2 eV and the contact resistance between Al and a-IGZO is known to be
quite low [23]. The Aurum (Au) and platinum (Pt) electrodes are chosen as the Schottky contact due
to their high work functions of 5.1 and 5.65 eV, respectively [24]. We measured the contact resistance
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between Al and a-IGZO and the value is 1.191 Ωcm2. The overlapping region between the two
electrodes determines the effective area of the diode. The Au/Pt Schottky contact area is modified by
photolithography to obtain a device with an effective area of 200 µm × 200 µm and 300 µm × 300 µm.
Figure 2a shows the cross-sectional schematic of the a-IGZO diodes [25], LS represents the thickness of
the a-IGZO layer and WD is the depletion width caused by the Schottky barrier. The following four
a-IGZO thicknesses (L) were investigated: 30, 50, 100, and 150 nm. An equivalent circuit of the diode is
shown in Figure 2b, where RS is the series resistance and consists of the bulk resistance of the a-IGZO
layer and the ohmic contact resistance of the Al contact. To describe high-frequency characteristics,
an effective series resistance RES was introduced, which was obtained by subtracting the equivalent
resistance of the depletion region from RS [26].
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Figure 3. An ideal band diagram of the metal-N semiconductor (a) before contact and (b) after contact. 

The ideal barrier height of the semiconductor after the metal is brought in contact with the N-
type semiconductor is represented as ФB0, and electrons move from the metal to the semiconductor 
to form a Schottky barrier, as represented by Equation (1). Ф஻଴ = ሺФ௠ − 𝑋ሻ (1) 

As represented by Equation (2), Vbi is the built-in voltage, and this barrier is formed for the 
electrons in the conduction band moving toward the metal, similar to the junction barrier. 

Figure 2. (a) Cross-sectional structure of the diode. (b) Equivalent circuit of the a-IGZO Schottky
diode [27].

The a-IGZO semiconductor is an N-type semiconductor. The ideal energy band before contact
with a certain metal is shown in Figure 3a, and the vacuum level is used as the reference energy level,
where φm is the metal’s work function, X is the electron affinity, and φs is the semiconductor’s work
function. Figure 3b shows the energy band diagram of the Schottky junction in which the N-type
semiconductor is in contact with the metal. Usually, φm > φs, and at this time, the Fermi level of the
N-type semiconductor is higher than that of the metal. In order to achieve equilibrium of the respective
Fermi levels, electrons flow from the semiconductor to the metal, and the transfer of charges causes the
interface area of semiconductor and metal to deplete free carriers and the interface area, also known as
the depletion layer [26,27].
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The ideal barrier height of the semiconductor after the metal is brought in contact with the N-type
semiconductor is represented as φB0, and electrons move from the metal to the semiconductor to form
a Schottky barrier, as represented by Equation (1).

FB0 = (Fm − X) (1)
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As represented by Equation (2), Vbi is the built-in voltage, and this barrier is formed for the
electrons in the conduction band moving toward the metal, similar to the junction barrier.

Vbi = (FB0 − Fn) (2)

According to the theory of thermionic emission, the voltage applied to both sides of the
metal–semiconductor barrier region and the density of the current passing through the rectifying
junction can be represented by Equation (3):

J = A∗T2 exp
(
−qFB

kT

)[
exp

(
qVa

nkT

)
− 1

]
(3)

where k is the Boltzmann constant (1.3806505 × 10−23 J/K), T is the thermodynamic temperature, and
A* is the effective Richardson constant, which can be obtained from the effective electron mass in the
semiconductor material. For the a-IGZO material in this paper, m* = 0.34m0, where m0 is the mass of a
single free electron and its value is 9.109 × 10−31 kg; thus, m* = 41 A/cm2 × K2.

2.3. Device Fabrication

This experiment used Al2O3 ceramic as a substrate for thin-film diode preparation. Before the
fabrication, the substrates were degreased by supersonic cleaning in deionized water, acetone,
and methanol, and then dried with nitrogen. Ti-Pt electrodes (10–50 nm thick) were deposited
by RF sputtering at 80 W in pure argon, and subsequently, a-IGZO was formed by doping ZnO, Ga2O3,
and In2O3 in a certain proportion (In/Ga/Zn = 1:1:1) and was sputtered at 80 W with 1% argon and 4%
oxygen at 0.5 Pa. Al electrodes (50 nm thick) were deposited by RF sputtering at 80 W in pure argon.
Patterns were defined by photolithography with the standard processes. All devices were fabricated at
room temperature without any thermal annealing process. The J–V characteristics were obtained using
a Keithley 4200A-SCS semiconductor analyzer and Lakeshore Model CRX-6.5K versatile cryogen-free
micro-manipulated probe station at the temperature range of 20 K to 675 K.

In this study, oxygen vacancies were considered to be the source of carriers for a-IGZO films.
However, too many oxygen vacancies can lead to many internal defect states in the active layer and
affect device performance [25,28,29]. Therefore, we adjusted the oxygen-argon ratio in the sputtering
environment during the sputtering process and the film thickness, and incorporated a certain amount
of oxygen to eliminate excessive oxygen vacancies [30–32] to create better performance devices.

3. Results and Discussion

3.1. a-IGZO Schottky Diodes on Al2O3 Ceramics

The Schottky contact between the anode metal and the semiconductor layer directly affects the
rectification performance of the diode. Figure 4 shows the optical images of the fabricated device with
different positive electrode material.

The J–V characteristics of the a-IGZO Schottky diodes on Al2O3 ceramics with different
Schottky contact metals are shown in Figure 5. From the Figure 5a, the rectification junction area
is 300 µm × 300 µm, the diode with an Au and a Pt Schottky contact metal exhibited a rectification
ratio of 100.4 and 119.4, respectively. At an applied voltage of 1 V, the diode with a 50-nm-thick
a-IGZO layer between the Au and Al contacts exhibited a current density of 0.074 mA/cm2 and
that between the Pt and Al contacts exhibited a current density of 1.20 mA/cm2. From Figure 5b,
the rectification junction area was 200 µm × 200 µm, the Au/a-IGZO rectification ratio was 25.1,
and the Pt/a-IGZO rectification ratio was 42.7. At an applied voltage of 1 V, the current density
of Au and Pt Schottky contacts were 0.034 mA/cm2 and 19.9 mA/cm2, respectively. The diode
with a Pt electrode exhibited a higher rectification ratio because when the metal and semiconductor
were in contact, the energy band of the semiconductor at the interface was bent to form a Schottky
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barrier. The larger the metal work function, the larger the interfacial resistance and the higher the
rectification ratio. Although the reverse-bias leakage current of the Au/a-IGZO diode is relatively low,
its rectification ratio is much lower than that of the Pt/a-IGZO diode. Considering the above factors,
we chose Pt as the Schottky metal.
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Figure 5. J–V Characteristics of different Schottky metal/a-IGZO diodes. (a) Au/a-IGZO and
Pt/a-IGZO diodes with sputtering process of O2: (O2 + Ar) = 1%. (b) Au/a-IGZO and Pt/a-IGZO
diodes with sputtering process of O2: (O2 + Ar) = 4%.

The series resistance has a sensitive dependence on the thickness of the a-IGZO layer. The J–V
characteristics of the a-IGZO Schottky diodes on Al2O3 ceramics with different a-IGZO thicknesses
are shown in Figure 6. As shown in Figure 6a, for the diodes with 100 nm, 50 nm, and 30 nm a-IGZO
layer thicknesses, the current densities are 0.042, 1.19, and 15.2 mA/cm2 and the rectification ratios are
887.2, 94.8, and 28.1, respectively. From Figure 5b, for the diodes with 150, 100, and 50 nm a-IGZO
layer thicknesses, the current densities are 66.3, 0.005, and 20.1 A/cm2 and the rectification ratios are
79.1, 44.1, and 233.9, respectively. Taking Figure 6b as an example, given that the effective Richardson
constant of a-IGZO is 41 A cm2 K2 and based on the thermionic emission theory [28,33,34], the extracted
barrier heights are 0.41, 0.47, and 0.50 eV for diodes with 50, 100, and 150 nm a-IGZO layer thicknesses,
respectively. The slope of the linear segment of the curve shows that the diode’s ideal factor n with an
a-IGZO film thickness of 50 nm is also the largest.

Oxygen vacancies are the main source of carriers in a-IGZO films. However, excessive oxygen
vacancies can lead to several defect states in the film and affect the device performance. An excessive
oxygen content in the a-IGZO sputtering deposition process will degrade the stability of the film and
reduce the electron mobility. For the Schottky barrier diodes studied here, when a lower forward
bias voltage is applied, the performance of the diode depends on the metal–semiconductor Schottky
contact barrier rather than the electron mobility of the a-IGZO layer. Therefore, appropriate oxygen
addition during sputtering is used to passivate the Schottky contact surface, thereby reducing the
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Fermi level pinning effect [35]. When the forward bias voltage is high, the on-state current of the diode
is limited by the series resistance, which is closely related to the electron mobility of the a-IGZO film.
The incorporation of oxygen in argon during the sputtering process can result in a trade-off between
the requirements for Schottky contact high barriers and relatively low series resistance.
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Figure 6. J–V Characteristics of Pt/a-IGZO Diodes with Different a-IGZO Thicknesses. (a) J–V
characteristics of Pt/a-IGZO diodes with a-IGZO thicknesses of 30, 50, and 100 nm, and sputtering
process O2: (O2 + Ar) = 1%. (b) J–V characteristics of Pt/a-IGZO diodes with a-IGZO thicknesses of 50,
100, and 150 nm, sputtering process O2: (O2 + Ar) = 4%.

The surface morphology of the samples is analyzed using the AFM technique. The AFM images
of 50-nm-thick a-IGZO films with oxygen/argon ratios of 1% and 4% are shown in Figure 7. It can
be seen that when the oxygen content is 4%, the surface roughness of the 50-nm-thick a-IGZO film is
slightly larger than that of the film particle with the oxygen content of 1%. However, a film having an
oxygen content of 1% has poor continuity and uniformity, and has island-like particle clusters, which is
not conducive for the formation of an ideal contact between the metal and the a-IGZO film.
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Figure 7. AFM images of 50-nm-thick a-IGZO films in the sputtering process of (a) O2: (O2 + Ar) = 1%
and (b) O2: (O2 + Ar) = 4%.

The targets used for the sputtering were InGaZnO4 targets with a standard atomic ratio of In: Ga:
Zn = 1:1:1. According to Olziersky et al. [36], the atomic ratio of In/Ga varies with the preparation
conditions. When the atomic ratio is 0.95, the carrier mobility is high, from the EDS analysis shown
in Table 1, when the oxygen content is 4%, the atomic ratio of In/Ga close to 0.95. The Figure 8a
shows the XRD pattern of the prepared a-IGZO film on Al2O3 substrate. The result of XRD analysis
showed that there is an amorphous diffuse peak when the diffraction angle is less than 20◦, and no
strong crystal diffraction peak is present. Since the thickness of the film is only 50 nm, the diffraction
peak of the Al2O3 substrate is strong when the diffraction angle is greater than 20◦. Strong diffraction
peaks of Al2O3 substrate when the diffraction angle is greater than 20◦. The prepared a-IGZO film is
amorphous. Shown in Figure 8b is a cross-sectional view of the diode, and Figure 8c is a surface view
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of the a-IGZO film. The surface of Al2O3 has pits with a diameter of about 2 µm, but the thickness of
Ti/Pt/a-IGZO/Al deposited on the surface is consistent with the actual device.

Table 1. EDS Element Composition Analysis of a-IGZO film.

O2: (Ar + O2) Element Element Mass Ratio (%) Elemental Atomic Ratios (%)

1%
In 28.33 36.12
Ga 17.34 36.42
Zn 12.26 27.46

4%
In 12.49 36.03
Ga 6.93 32.94
Zn 6.11 31.03
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Figure 9. Pt/a-IGZO diodes with a film thickness of 50 nm in a sputtering environment with O2: (Ar + 
O2) = 1% and O2: (Ar + O2) = 4%. 

3.2. High-Temperature Properties 

In this study, the I–V characteristics of the Pt/a-IGZO diode with a film thickness of 50 nm and 
the sputtering process of O2: (Ar + O2) = 4% were tested in the range of 21–400 °C. The starting 
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Figure 8. (a) XRD pattern of the a-IGZO film on Al2O3 substrate. SEM image of (b) diode cross section
and (c) a-IGZO film surface.

The J–V characteristics of the Pt/a-IGZO Schottky diodes on Al2O3 ceramics with different
oxygen/argon ratios sputtering conditions are shown in Figure 9, where for the diodes with 1%
and 4% oxygen/argon ratio sputtering processes, the current densities are 0.34 mA/cm2 and
20.13 mA/cm2 and the rectification ratios are 29.2 and 233.9, respectively. During the sputtering
process, the appropriate amount of oxygen in the argon gas can fill in the vacancy of the a-IGZO layer,
reduce the surface defects, reduce the equivalent series resistance of the contact surface, and increase
the Schottky contact barrier height.
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Figure 9. Pt/a-IGZO diodes with a film thickness of 50 nm in a sputtering environment with O2: (Ar +
O2) = 1% and O2: (Ar + O2) = 4%.

3.2. High-Temperature Properties

In this study, the I–V characteristics of the Pt/a-IGZO diode with a film thickness of 50 nm and
the sputtering process of O2: (Ar + O2) = 4% were tested in the range of 21–400 ◦C. The starting
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temperature was room temperature (21 ◦C), and the sample was tested at intervals of 50 ◦C. The I–V
and J-V characteristics of the a-IGZO-based diode in the temperature range 21–400 ◦C are shown in
Figure 10.Sensors 2019, 19 FOR PEER REVIEW  8 
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The forward conduction voltage of the Pt/a-IGZO diode decreases with the temperature 
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voltage drift rate is 1.32 mV/°C, the turn-on resistance is reduced from 3.81 kΩ to 1.54 kΩ, and the 

Figure 10. I–V and J-V curve of diode at 21–400 ◦C.

It shows when the device is at the forward bias, it exhibits forward rectification characteristics as
expected and the current increases with temperature for a given voltage at forward. At a lower bias,
a new feature dominated by a leakage component adds non-linearity to the I-V plot. Bartolomeo and
Giubileo et al. have found that Equation (4) provides a perfect fit with the I-V plot at a low bias [37].

I = IO[e
q(V−Rs I)

nKT − 1] (4)

where IO can be described as Equation (5):

IO = AA∗T2e−FB/KT (5)

The saturation current IO was obtained by extrapolating the linear intermediate voltage region
of the linear part of the curve to a zero applied bias voltage for each temperature. The experimental
values of the barrier height (FB) and the ideality factor (n) for the Schottky diode were determined from
intercepts and slopes of the forward bias lnI versus V plot at each temperature, they can be obtained
from Equations (4) and (5) and are presented in Figure 11a. Figure 11b shows resistance extracted from
Cheung functions [37].

The forward conduction voltage of the Pt/a-IGZO diode decreases with the temperature
increasing from 21 ◦C to 400 ◦C; in addition, the voltage is reduced from 0.64 V to 0.14 V, the average
voltage drift rate is 1.32 mV/◦C, the turn-on resistance is reduced from 3.81 kΩ to 1.54 kΩ, and the
average resistance drift rate is 5.99 Ω/◦C. When the bias voltage is negative, reverse-bias leakage
current also increases with increasing temperature, the reverse-bias leakage current increased from
3.44 × 10−8 A to 0.03 µA to 0.47 µA. The curve of the turn-on voltage is shown in Figure 12a,
which shows that when the temperature increases, the turn-on voltage decreases, and the change law is
approximately linear. The turn on-resistance also gradually decreases and is fitted with an exponential
function as the temperature changes; the result is shown in Figure 12b.
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Pt/a-IGZO diode turn-on resistance in the range of 21–400 ◦C.

With an increase in forward voltage, the voltage drop across the series resistance strongly limits
the exponential increase of the current. The equivalent resistance of the diode decreases at high
temperatures and the effect of resistance on the entire device is reduced, φB increases gradually with
temperature, with a barrier height of 0.73 eV at 21 ◦C and 1.25 eV at 400 ◦C, and the ideal factor
n gradually decreases with temperature (1.54 at 21 ◦C and 1.09 at 400 ◦C) [38].

It is used in the temperature sensor to extract the forward voltage of the diode with a forward
current density of 1 × 10−5 A/cm2, 1 × 10−4 A/cm2, and 1 × 10−3 A/cm2. Figure 13a shows the
relationship between temperature and forward voltage at different current density and the voltage
decreases approximately linearly with the increase of temperature. In order to verify the repeatability
of the sensor, the temperature was measured at different concentrations three times and is shown in
Figure 13b. It can be found that the sensor’s response is approximately the same at the same current
density, respectively, in each heating and cooling cycle. When the forward current density of the diode
is 1 × 10−5 A/cm2, the sensitivity of the sensor is 0.81 mV/◦C; when the forward current density is
1 × 10−4 A/cm2, the sensitivity is 1.37 mV/◦C; when the forward current density is 1 × 10−3 A/cm2,
the sensitivity is 1.59 mV/◦C.
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Figure 13. (a) Forward voltage versus temperature curve of Pt/a-IGZO diode at 21-400 ◦C. (b) Sensor’s
response for temperature at different current density for three cycles.

The predicted temperature inaccuracy is merely −4.5–+5.5 ◦C (20–150 ◦C), −10.7–+12 ◦C
(150–300 ◦C), and −5.5–+9 ◦C (300–450 ◦C) using two-point calibration within the range of 20–450 ◦C.

4. Conclusions

So far, we studied the reliability of the device, including the variation of diode with IGZO
layer thickness and sputtering oxygen concentration. We have demonstrated that Pt/a–IGZO
Schottky diodes on Al2O3 ceramic substrates with 50 nm a-IGZO thickness and a sputtering oxygen
concentration of O2:(O2 + Ar) = 4% can operate in the temperature range of 21–400 ◦C. The forward
conduction voltage of the Pt/a–IGZO diode decreased from 0.64 V at 21 ◦C to 0.14 V at 400 ◦C, and the
average voltage drift rate was 1.32 mV/◦C. The φB increased gradually with increasing temperature
from 0.91 eV at 21 ◦C to 1.67 eV at 400 ◦C, the ideal factor n gradually decreased from 1.06 at 21
◦C and 0.59 at 400 ◦C. When it is used as a temperature sensor, the sensitivity of the sensor is 0.81
mV/◦C, 1.37 mV/◦C, and 1.59 mV/◦C when the forward current density of the diode is 10−5 A/cm2,
10−4 A/cm2, and 10−3 A/cm2, respectively.
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