Estimating Chlorophyll Content of Leafy Green Vegetables from Adaxial and Abaxial Reflectance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Reflectance Measurements
2.3. Leaf Chlorophyll Extraction
2.4. Data Analysis
3. Results and Discussion
3.1. Reflectance of Adaxial and Abaxial Leaf Surfaces
3.2. Accuracy of Leaf Chlorophyll Estimation from the Reflectance Data from Two Leaf Surfaces
3.3. Spectral Band Selection for Estimating Leaf Chlorophyll Content with Reflectance from Two Leaf Surfaces
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lunadei, L.; Diezma, B.; Lleó, L.; Ruiz-Garcia, L.; Cantalapiedra, S.; Ruiz-Altisent, M. Monitoring of fresh-cut spinach leaves through a multispectral vision system. Postharvest Biol. Technol. 2012, 63, 74–84. [Google Scholar] [CrossRef]
- Ragaert, P.; Verbeke, W.; Devlieghere, F.; Debevere, J. Consumer perception and choice of minimally processed vegetables and packaged fruits. Food Qual. Prefer. 2004, 15, 259–270. [Google Scholar] [CrossRef]
- Xue, L.; Yang, L. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS J. Photogramm. Remote Sens. 2009, 64, 97–106. [Google Scholar] [CrossRef]
- Moran, J.A.; Mitchell, A.K.; Goodmanson, G.; Stockburger, K.A. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: A comparison of methods. Tree Physiol. 2000, 20, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Kergoat, L.; Lafont, S.; Arneth, A.; Dantec, V.L.; Saugier, B. Nitrogen controls plant canopy light-use efficiency in temperate and boreal ecosystems. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Filella, I.; Serrano, L.; Serra, J.; Penuelas, J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Levizou, E.; Drilias, P.; Psaras, G.K.; Manetas, Y. Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co-occur. New Phytol. 2005, 165, 463–472. [Google Scholar] [CrossRef]
- Steele, M.; Gitelson, A.A.; Rundquist, D. Nondestructive estimation of leaf chlorophyll content in grapes. Am. J. Enol. Vitic. 2008, 59, 299–305. [Google Scholar]
- Fiorani, F.; Schurr, U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 2013, 64, 267. [Google Scholar] [CrossRef]
- Sadras, V.O.; Echarte, L.; Andrade, F.H. Profiles of leaf senescence during reproductive growth of sunflower and maize. Ann. Bot. 2000, 85, 187–195. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Curran, P.J.; Dungan, J.; Gholz, H. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 1990, 7, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Curran, P.J.; Dungan, J.L.; Macler, B.A.; Plummer, S.E. The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration. Remote Sens. Environ. 1991, 35, 69–76. [Google Scholar] [CrossRef]
- Danson, F.M.; Plummer, S.E. Red-edge response to forest leaf area index. Int. J. Remote Sens. 1995, 16, 183–188. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Cai, W.; Li, Y.; Shao, X. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemom. Intell. Lab. Syst. 2007, 90, 188–194. [Google Scholar] [CrossRef]
- Kira, O.; Linker, R.; Gitelson, A. Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 251–260. [Google Scholar] [CrossRef]
- Kira, O.; Nguy-Robertson, A.L.; Arkebauer, T.J.; Linker, R.; Gitelson, A.A. Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agric. For. Meteorol. 2016, 218, 243–249. [Google Scholar] [CrossRef]
- Centner, V.; Massart, D.-L.; de Noord, O.E.; de Jong, S.; Vandeginste, B.M.; Sterna, C. Elimination of uninformative variables for multivariate calibration. Anal. Chem. 1996, 68, 3851–3858. [Google Scholar] [CrossRef] [PubMed]
- Stuckens, J.; Verstraeten, W.W.; Delalieux, S.; Swennen, R.; Coppin, P. A dorsiventral leaf radiative transfer model: Development, validation and improved model inversion techniques. Remote Sens. Environ. 2009, 113, 2560–2573. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, J.-C.; Wang, K.; Loraamm, R.-W.; Huang, W.-J.; Wang, J.-H.; Zhao, J.-L. Analysis of spectral difference between the foreside and backside of leaves in yellow rust disease detection for winter wheat. Precis. Agric. 2013, 14, 495–511. [Google Scholar] [CrossRef]
- Brackx, M.; Wittenberghe, S.V.; Verhelst, J.; Scheunders, P.; Samson, R.J.E.P. Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation. Environ. Pollut. 2016, 220, 159–167. [Google Scholar]
- Lu, S.; Lu, X.; Zhao, W.; Liu, Y.; Wang, Z.; Omasa, K. Comparing vegetation indices for remote chlorophyll measurement of white poplar and Chinese elm leaves with different adaxial and abaxial surfaces. J. Exp. Bot. 2015, 66, 5625–5637. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Lu, S. Effects of adaxial and abaxial surface on the estimation of leaf chlorophyll content using hyperspectral vegetation indices. Int. J. Remote Sens. 2015, 36, 1447–1469. [Google Scholar] [CrossRef]
- Lu, S.; Lu, F.; You, W.; Wang, Z.; Liu, Y.; Omasa, K. A robust vegetation index for remotely assessing chlorophyll content of dorsiventral leaves across several species in different seasons. Plant Methods 2018, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Horler, D.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Carter, G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Datt, B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+ b, and total carotenoid content in eucalyptus leaves. Remote Sens. Environ. 1998, 66, 111–121. [Google Scholar] [CrossRef]
- Datt, B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. Int. J. Remote Sens. 1999, 20, 2741–2759. [Google Scholar] [CrossRef]
- Kochubey, S.M.; Kazantsev, T.A. Changes in the first derivatives of leaf reflectance spectra of various plants induced by variations of chlorophyll content. J. Plant Physiol. 2007, 164, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Wintermans, J.F.G.M.; De Mots, A.S. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochim. et Biophys. Acta (BBA) Biophys. Photosynth. 1965, 109, 448–453. [Google Scholar] [CrossRef]
- Brereton, R.G. Chemometrics, Data Analysis for the Laboratory and Chemical Plant; John Wiley & Sons Ltd.: West Sussex, UK, 2003. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Siegmann, B.; Jarmer, T. Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data. Int. J. Remote Sens. 2015, 36, 4519–4534. [Google Scholar] [CrossRef]
- Baránková, B.; Lazár, D.; Nauš, J. Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves. Remote Sens. Environ. 2016, 174, 181–196. [Google Scholar] [CrossRef]
- Ivanova, L. Restructuring of the leaf mesophyll in a series of plant life forms. Dokl. Biol. Sci. 2012, 447, 386–389. [Google Scholar] [CrossRef] [PubMed]
Samples for Calibration | Total Chlorophyll Content (mg m−2) | Samples for Validation | Total Chlorophyll Content (mg m−2) | ||||
---|---|---|---|---|---|---|---|
Minimum | Median | Maximum | Minimum | Median | Maximum | ||
pakchoi var.Shanghai Qing (n = 45) | 7.20 | 302.73 | 557.57 | pakchoi var.Shanghai Qing (n = 21) | 7.20 | 198.15 | 490.66 |
Chinese white cabbage (n = 43) | 7.20 | 236.39 | 499.34 | Chinese white cabbage (n = 17) | 60.64 | 269.79 | 465.92 |
Romaine lettuce (n = 45) | 76.06 | 276.70 | 446.18 | Romaine lettuce (n = 17) | 95.07 | 269.31 | 404.78 |
Spectral Index | References | Spectral Index | References |
---|---|---|---|
(R850 − R710)/(R850− R680) | Datt, 1999b | (R800 − R650)/(R800 + R650) | Blackburn, 1998b |
D754/D704 | Takebe and Yoneyama, 1989 | PSNDb: (R800 − R635)/(R800 + R635) | Blackburn, 1998a |
NDI: (R750 − R705)/(R750 + R705) | Gitelson and Merzlyak, 1994 | VOG2: (R734 − R747)/(R715 + R726) | Vogelmann et al., 1993 |
D730 | Richardson et al., 2002 | 1/R700−1/R750 | Gitelson et al., 2003 |
R672/(R550*R708) | Datt, 1998 | R750/R700 | Lichtenthaler et al., 1996 |
R860/(R550*R708) | Datt, 1998 | R750/R550 | Lichtenthaler et al., 1996 |
1/R700 | Gitelson and Merzlyak, 1996 | 1/R550−1/R750 | Gitelson et al., 2003 |
R800/R675 | Blackburn, 1998b | R750/R710 | Zarco-Tejada et al., 2001 |
R800/R650 | Blackburn, 1998b | R710/R760 | Carter, 1994 |
PSSRb: B800/B635 | Blackburn, 1998a | R695/R420 | Carter, 1994 |
PSSRa: R800/R680 | Blackburn, 1998a | R605/R760 | Carter, 1994 |
R672/R550 | Datt, 1998 | R550 | Carter, 1994 |
R860/R550 | Datt, 1998 | D715/D705 | Vogelman et al., 1993 |
(R800 − R675)/(R800 + R675) | Blackburn, 1998b | D725/D702 | Kochubey and Kazantsev, 2007 |
R680 | Blackburn, 1998b | R800−R550 | Buschman and Nagel, 1993 |
Vegetables | Calibration Dataset | Validation Dataset | |||||
---|---|---|---|---|---|---|---|
N | PCs | R2 | RMSE(mg m−2) | N | R2 | RMSE(mg m−2) | |
pakchoi Var. Shanghai Qing | 90 | 7 | 0.880 | 52.28 | 42 | 0.809 | 62.44 |
Chinese White Cabbage | 86 | 16 | 0.894 | 42.20 | 34 | 0.891 | 45.18 |
Romaine Lettuce | 90 | 8 | 0.879 | 38.66 | 34 | 0.834 | 38.58 |
All Combination | 266 | 16 | 0.846 | 51.77 | 110 | 0.811 | 55.59 |
Spectral Index | Validation for Pakchoi Var. Shanghai Qing | Spectral Index | Validation for Chinese White Cabbage | Spectral Index | Validation for Romaine Lettuce | Spectral Index | Validation for Vegetables Combined | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (mg m−2) | R2 | RMSE (mg m−2) | R2 | RMSE (mg m−2) | R2 | RMSE (mg m−2) | ||||
MDATT(R710 − R727)/(R710 − R734) | 0.790 | 65.41 | MDATT(R703 − R732)/(R703 − R722) | 0.850 | 52.89 | MDATT(R712 − R744)/(R712 − R720) | 0.736 | 48.54 | MDATT(R705 − R732)/(R705 − R722) | 0.800 | 58.81 |
D715/D705 | 0.766 | 69.11 | D715/D705 | 0.832 | 55.91 | D725/D702 | 0.692 | 52.47 | D715/D705 | 0.777 | 64.01 |
D725/D702 | 0.740 | 72.86 | D725/D702 | 0.796 | 61.64 | D715/D705 | 0.679 | 53.54 | D725/D702 | 0.751 | 67.57 |
(R850 − R710)/(R850 − R680) | 0.722 | 75.37 | (R850 − R710)/(R850 − R680) | 0.775 | 64.75 | D730 | 0.648 | 56.11 | (R850−R710)/(R850−R680) | 0.741 | 68.99 |
D730 | 0.701 | 78.05 | R710/R760 | 0.734 | 70.43 | (R850 − R710)/(R850 − R680) | 0.632 | 57.39 | VOG2:(R734 − R747)/(R715 + R726) | 0.711 | 72.78 |
R710/R760 | 0.696 | 78.77 | VOG2: (R734 − R747)/(R715 + R726) | 0.733 | 70.59 | VOG2: (R734 − R747)/(R715 + R726) | 0.629 | 57.56 | R710/R760 | o.710 | 73.00 |
VOG2: (R734 − R747)/(R715 + R726) | 0.691 | 79.45 | D730 | 0.698 | 75.04 | R800 − R550 | 0.595 | 60.18 | D730 | 0.691 | 75.34 |
NDI | 0.677 | 81.21 | NDI | 0.698 | 75.06 | R710/R760 | 0.578 | 61.42 | NDI | 0.682 | 76.34 |
R800 − R550 | 0.674 | 81.58 | R550 | 0.689 | 76.07 | R750/R710 | 0.554 | 63.13 | R750/R710 | 0.674 | 77.31 |
1/R550 − 1/R750 | 0.671 | 81.95 | R750/R710 | 0.688 | 76.30 | NDI | 0.533 | 64.59 | R605/R760 | 0.614 | 84.16 |
R750/R710 | 0.669 | 82.14 | 1/R700 | 0.663 | 79.30 | R860/R550 | 0.509 | 66.27 | R750/R550 | 0.609 | 84.74 |
R750/R550 | 0.669 | 82.22 | 1/R700 − 1/R750 | 0.641 | 81.80 | R750/R550 | 0.496 | 67.16 | R860/R550 | 0.607 | 84.92 |
R860/R550 | 0.661 | 83.19 | R605/R760 | 0.602 | 86.08 | D754/D704 | 0.487 | 67.76 | R750/R700 | 0.601 | 85.54 |
R605/R760 | 0.647 | 84.82 | 1/R550 − 1/R750 | 0.602 | 86.08 | R750/R700 | 0.449 | 70.17 | R800−R550 | 0.596 | 86.14 |
(R800 − R635)/(R800 + R635) | 0.625 | 87.55 | R750/R700 | 0.591 | 87.28 | R605/R760 | 0.385 | 74.16 | (R800 − R635)/(R800 + R635) | 0.591 | 86.62 |
R750/R700 | 0.605 | 89.73 | R860/(R550*R708) | 0.589 | 87.50 | 1/R550 − 1/R750 | 0.374 | 74.80 | R550 | 0.589 | 86.82 |
1/R700 − 1/R750 | 0.602 | 90.13 | R800 − R550 | 0.571 | 89.42 | R860/(R550 * R708) | 0.357 | 75.83 | 1/R700 − 1/R750 | 0.587 | 87.02 |
PSSRb: R800/R635 | 0.599 | 90.40 | (R800 − R635)/(R800 + R635) | 0.570 | 89.55 | 1/R700 − 1/R750 | 0.333 | 7725 | 1/R550 − 1/R750 | 0.587 | 87.06 |
R550 | 0.596 | 90.80 | R750/R550 | 0.564 | 90.14 | (R800 − R635)/(R800 + R635) | 0.329 | 77.46 | (R800−R650)/(R800 + R650) | 0.552 | 90.66 |
(R800 − R650)/(R800 + R650) | 0.592 | 91.24 | R860/R550 | 0.559 | 90.69 | PSSRb: B800/B635 | 0.291 | 79.63 | R860/(R550*R708) | 0.548 | 91.05 |
R860/(R550*R708) | 0.582 | 92.39 | (R800 − R650)/(R800 + R650) | 0.531 | 93.44 | (R800 − R650)/(R800 + R650) | 0.230 | 82.98 | 1/R700 | 0.537 | 92.21 |
R800/R650 | 0.579 | 92.69 | PSSRb: B800/B635 | 0.447 | 101.56 | R550 | 0.212 | 83.91 | PSSRb: B800/B635 | 0.512 | 94.65 |
1/R700 | 0.544 | 96.49 | R695/R420 | 0.446 | 101.62 | R800/R650 | 0.209 | 84.07 | R800/R650 | 0.472 | 98.43 |
(R800 − R675)/(R800 + R675) | 0.458 | 105.14 | R680 | 0.419 | 104.06 | PSSRa: R800/R680 | 0.202 | 84.47 | (R800 − R675)/(R800 + R675) | 0.433 | 102.04 |
R800/R675 | 0.436 | 107.30 | R800/R650 | 0.397 | 106.03 | (R800 − R675)/(R800 + R675) | 0.192 | 85.02 | PSSRa: R800/R680 | 0.403 | 104.73 |
PSSRa: R800/R680 | 0.424 | 108.44 | (R800 − R675)/(R800 + R675) | 0.388 | 106.81 | R800/R675 | 0.181 | 85.59 | R800/R675 | 0.402 | 104.75 |
R680 | 0.397 | 110.92 | D754/D704 | 0.344 | 110.54 | 1/R700 | 0.180 | 85.65 | R680 | 0.396 | 105.30 |
D754/D704 | 0.361 | 114.21 | PSSRa: R800/R680 | 0.333 | 111.48 | R672/(R550*R708) | 0.113 | 89.08 | D754/D704 | 0.361 | 108.33 |
R672/R550 | 0.178 | 129.50 | R800/R675 | 0.323 | 112.31 | R680 | 0.055 | 91.92 | R695/R420 | 0.190 | 121.92 |
R695/R420 | 0.082 | 136.89 | R672/(R550*R708) | 0.300 | 114.18 | R695/R420 | 0.043 | 92.52 | R672/(R550*R708) | 0.159 | 124.24 |
R672/(R550*R708) | 0.047 | 139.41 | R672/R550 | 0.024 | 134.84 | R672/R550 | 0.023 | 93.46 | R672/R550 | 0.086 | 129.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, F.; Bu, Z.; Lu, S. Estimating Chlorophyll Content of Leafy Green Vegetables from Adaxial and Abaxial Reflectance. Sensors 2019, 19, 4059. https://doi.org/10.3390/s19194059
Lu F, Bu Z, Lu S. Estimating Chlorophyll Content of Leafy Green Vegetables from Adaxial and Abaxial Reflectance. Sensors. 2019; 19(19):4059. https://doi.org/10.3390/s19194059
Chicago/Turabian StyleLu, Fan, Zhaojun Bu, and Shan Lu. 2019. "Estimating Chlorophyll Content of Leafy Green Vegetables from Adaxial and Abaxial Reflectance" Sensors 19, no. 19: 4059. https://doi.org/10.3390/s19194059
APA StyleLu, F., Bu, Z., & Lu, S. (2019). Estimating Chlorophyll Content of Leafy Green Vegetables from Adaxial and Abaxial Reflectance. Sensors, 19(19), 4059. https://doi.org/10.3390/s19194059