Dissolved Gas Analysis Equipment for Online Monitoring of Transformer Oil: A Review
Abstract
:1. Introduction
2. Health Index of the Power Transformer
- DGA: The DGA method measures the gas concentrations in oil that are formed by the insulation decomposition processes, which occur when the transformer has faults. Depending on the type of fault, different types of decomposition processes can occur. When electrical and thermal defects occur in the transformer oil, they degrade generating combustible gases, such as hydrogen (), ethylene (CH), acetylene (CH), methane (CH) and ethane (CH). When decomposition occurs in cellulosic insulation, the generated gases are carbon monoxide (CO) and carbon dioxide (CO), and these gases indicate a thermal fault. Depending on the gas concentration that is measured, the type of fault can be identified by using the interpretation method that was collected in [34,35].
- OQA: The OQA consists of a combination of electrical, physical and chemical tests. The list of all the tests that can be performed on the transformer oil is shown in IEEE Std C57.106 [4]. The most important and common are the dielectric breakdown voltage (BDV), the water content, the power factor, the interfacial tension (IFT), acidity and colour. The results of these tests are used to prevent incipient failures and to evaluate the preventive maintenance processes, such as the replacement or recovery of transformer oil [36]. Even the use of these tests are different and have different weights when calculating the HI, depending on the study [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31].
- FFA: The content of FFA in the transformer oil indicates the decomposition processes of the cellulosic material that constitute the transformer solid insulation [37]. The furanic components remain adsorbed by the paper, while a small part is dissolved in the oil. Its presence in the oil is used to diagnose the equipment in service as a complementary information to the DGA. Although the content of FFA in the transformer oil is a very important parameter in the calculation of HI, there are no recommendations for the interpretation of the results in the standards, as indicated by [24,28,38,39], so in each of the studies [15,16,17,19,20,22,23,26,30] a different limit value is taken in the HI calculation.
3. Dissolved Gas-In-Oil Analysis
4. DGA Monitors
4.1. Installation of The Monitor
4.2. Fault Detection Monitor (Single-Gas DGA)
4.3. Fault Diagnosis Monitor (Multi-Gas DGA)
4.4. Analogue Inputs and Outputs of DGA Monitors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BDV | Breakdown voltage |
CH | Acetylene |
CH | Ethylene |
CH | Ethane |
CH | Methane |
CO | Carbon monoxide |
CO | Carbon dioxide |
DGA | Dissolves gas analysis |
DNO | Distribution network operators |
DPM | Duval pentagon method |
DRM | Doernenburg ratio method |
DTM | Duval triangle method |
FC | Fuel cell |
FFA | Furfuraldehyde |
FTIR | Fourier transform infrared |
GC | Gas chromatography |
H | Hydrogen |
HI | Health index |
IC | Solid state sensor |
IFT | Interfacial tension |
IR | Infrared |
IRM | IEC ratio method |
KGM | Key gas method |
LDL | Lower detection limit |
LTC | Load tap changer |
NDIR | Non dispersive infrared |
NIR | Near infrared |
NIST | National Institute of Standards and Technology |
OQA | Oil quality analysis |
PAS | Photoacoustic spectroscopy |
PTFE | Polytetrafluoroethylene |
RRM | Rogers ratio method |
TCD | Thermal conductivity detector |
References
- CIGRE. Ageing High Voltage Substation Equipment and Possible Mitigation Techniques; CIGRE: Paris, France, 2018; Volume 725. [Google Scholar]
- De Faria, H.; Costa, J.G.S.; Olivas, J.L.M. A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis. Renew. Sustain. Energy Rev. 2015, 46, 201–209. [Google Scholar] [CrossRef]
- Christina, A.J.; Salam, M.; Rahman, Q.; Wen, F.; Ang, S.; Voon, W. Causes of transformer failures and diagnostic methods—A review. Renew. Sustain. Energy Rev. 2018, 82, 1442–1456. [Google Scholar] [CrossRef]
- IEEE Guide for Acceptance and Maintenance of Insulating Mineral Oil in Electrical Equipment; IEEE: Piscataway, NJ, USA, 2015.
- CIGRE. Guide for Transformer Maintenance; CIGRE: Paris, France, 2011; Volume 445. [Google Scholar]
- CIGRE. Guide on Transformer Intelligent Condition Monitoring (TICM) Systems; CIGRE: Paris, France, 2015; Volume 603. [Google Scholar]
- Power Transformer Maintenance and Application Guide; Technical Report; EPRI: Palo Alto, CA, USA, 2002.
- Saad, M.; teNyenhuis, E. On-line gas monitoring for increased transformer protection. In Proceedings of the IEEE Electrical Power and Energy Conference (EPEC), Saskatoon, SK, Canada, 22–25 October 2017. [Google Scholar] [CrossRef]
- Khederzadeh, M. Transformer Overload Management and Condition Monitoring. In Proceedings of the IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, 9–12 June 2008. [Google Scholar] [CrossRef]
- Bian, J.; Yang, S.; Sun, X. The optimal maintenance strategy of power transformers based on the life cycle cost. In Proceedings of the 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin, China, 29–31 July 2017. [Google Scholar] [CrossRef]
- Freitag, S.C.; Sperandio, M.; Marchesan, T.B.; Carraro, R. Power transformer risk management: Predictive methodology based on reliability centered maintenance. In Proceedings of the Simposio Brasileiro de Sistemas Eletricos (SBSE), Niteroi, Brazil, 12–16 May 2018. [Google Scholar] [CrossRef]
- Irungu, G.K.; Akumu, A.O.; Munda, J.L. Transformer condition assessment for maintenance ranking: A comparison of three standards and different weighting techniques. In Proceedings of the IEEE AFRICON, Cape Town, South Africa, 18–20 September 2017. [Google Scholar] [CrossRef]
- Risk Management. Guidelines 31000:2018; ISO: Geneva, Switzerland, 2018.
- Working Group DNOs and NIE. DNO Common Network Asset Indices Methodology; Technical Report; Ofgem: London, UK, 2017.
- Jahromi, A.; Piercy, R.; Cress, S.; Service, J.; Fan, W. An approach to power transformer asset management using health index. IEEE Electr. Insul. Mag. 2009, 25, 20–34. [Google Scholar] [CrossRef]
- Ashkezari, A.D.; Ma, H.; Saha, T.K.; Ekanayake, C. Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Abu-Elanien, A.E.B.; Salama, M.M.A.; Ibrahim, M. Calculation of a Health Index for Oil-Immersed Transformers Rated Under 69 kV Using Fuzzy Logic. IEEE Trans. Power Deliv. 2012, 27, 2029–2036. [Google Scholar] [CrossRef]
- Jürgensen, J.H.; Godin, A.S.; Hilber, P. Health index as condition estimator for power system equipment: A critical discussion and case study. CIRED Open Access Proc. J. 2017, 2017, 202–205. [Google Scholar] [CrossRef]
- Ortiz, F.; Fernandez, I.; Ortiz, A.; Renedo, C.J.; Delgado, F.; Fernandez, C. Health indexes for power transformers: A case study. IEEE Electr. Insul. Mag. 2016, 32, 7–17. [Google Scholar] [CrossRef]
- Hernanda, I.G.N.S.; Mulyana, A.; Asfani, D.A.; Negara, I.M.Y.; Fahmi, D. Application of health index method for transformer condition assessment. In Proceedings of the TENCON 2014: IEEE Region 10 Conference FacebookTwitterLinkedInGoogle, Bangkok, Thailand, 22–25 October 2014. [Google Scholar] [CrossRef]
- Alqudsi, A.Y.; ElHag, A.H. A cost effective artificial intelligence based transformer insulation health index. In Proceedings of the 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Punjab, India, 16–18 November 2017. [Google Scholar] [CrossRef]
- Naderian, A.; Cress, S.; Piercy, R.; Wang, F.; Service, J. An Approach to Determine the Health Index of Power Transformers. In Proceedings of the Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, Nice, France, 22–26 September 2008. [Google Scholar] [CrossRef]
- Haema, J.; Phadungthin, R. Condition assessment of the health index for power transformer. In Proceedings of the 2012 Power Engineering and Automation Conference, Wuhan, China, 18–20 September 2012. [Google Scholar] [CrossRef]
- Scatiggio, F.; Pompili, M. Health index: The TERNA’s practical approach for transformers fleet management. In Proceedings of the 2013 IEEE Electrical Insulation Conference (EIC), Ottawa, ON, Canada, 2–5 June 2013. [Google Scholar] [CrossRef]
- Taengko, K.; Damrongkulkamjorn, P. Risk assessment for power transformers in PEA substations using health index. In Proceedings of the 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, 15–17 May 2013. [Google Scholar] [CrossRef]
- Wattakapaiboon, W.; Pattanadech, N. The new developed Health Index for transformer condition assessment. In Proceedings of the International Conference on Condition Monitoring and Diagnosis (CMD), Xi’an, China, 25–28 September 2016. [Google Scholar] [CrossRef]
- Ghazali, Y.Z.Y.; Talib, M.A.; Rosli, H.A. TNB Experience in Condition Assessment and Life Management of Distribution Power Transformers; IET: London, UK, 2009. [Google Scholar] [CrossRef]
- Scatiggio, F.; Fraioli, A.; Iuliani, V.; Terna Rete Italia; Pompili, M. Health Index: The TERNA’s Practical Approach for Transformers Fleet Management. In Proceedings of the CIGRÉ Biennial Session A2-107, Paris, France, 24–29 August 2014. [Google Scholar]
- Picher, P.; Boudreau, J.F.; Manga, A.; Rajotte, C.; Tardif, C.; Bizier, G.; Gaetano, N.D.; Garon, D.; Girard, B.; Hamel, J.F.; et al. Use of Health Index and Reliability Data for Transformer Condition Assessment and Fleet Ranking. In Proceedings of the CIGRÉ Biennial Session A2-101, Paris, France, 24–29 August 2014. [Google Scholar]
- Saha, T.K.; Ma, H.; Ekanayake, C.; Martin, D.; Allan, D. Pattern Recognition Techniques for Determining the Health Index of Oil-Paper Insulation of In-service Power Transformers. In Proceedings of the CIGRÉ Biennial Session A2-105, Paris, France, 24–29 August 2014. [Google Scholar]
- Németh, B.; Vörös, C.; Csépes, G. Health index as one of the best practice for condition assessment of transformers and substation equipments—Hungarian experience. In Proceedings of the CIGRÉ Biennial Session A2-103, Paris, France, 24–29 August 2014. [Google Scholar]
- Azmi, A.; Jasni, J.; Azis, N.; Kadir, M.A. Evolution of transformer health index in the form of mathematical equation. Renew. Sustain. Energy Rev. 2017, 76, 687–700. [Google Scholar] [CrossRef]
- Orosz, T.; Sőrés, P.; Raisz, D.; Tamus, Z. Analysis of the Green Power Transition on Optimal Power Transformer Designs. Period. Polytech. Electr. Eng. Comput. Sci. 2015, 59, 125–131. [Google Scholar] [CrossRef] [Green Version]
- IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; IEEE: Piscataway, NJ, USA, 2008. [CrossRef]
- IEC 60599:2015: Mineral Oil-Filled Electrical Equipment in Service—Guidance on the Interpretation of Dissolved and Free Gases Analysis; IEC: Geneva, Switzerland, 2015.
- CIGRE. Life Management Techniques For Power Transformers; CIGRE: Paris, France, 2003; Volume 494. [Google Scholar]
- IEC 61198:1993: Mineral Insulating Oils—Methods for the Determination of 2-Furfural and Related Compounds; IEC: Geneva, Switzerland, 1993.
- CIGRE. Furanic Compounds for Diagnosis; CIGRE: Paris, France, 2012; Volume 494. [Google Scholar]
- Urquiza, D.; Garcia, B.; Burgos, J.C. Statistical study on the reference values of furanic compounds in power transformers. IEEE Electr. Insul. Mag. 2015, 31, 15–23. [Google Scholar] [CrossRef]
- Sun, H.C.; Huang, Y.C.; Huang, C.M. A Review of Dissolved Gas Analysis in Power Transformers. Energy Procedia 2012, 14, 1220–1225. [Google Scholar] [CrossRef] [Green Version]
- CIGRE. In DGA in Non-Mineral Oils and Load Tap Changers and Improved DGA Diagnosis Criteria; CIGRE: Paris, France, 2010; Volume 443.
- Mehta, D.M.; Kundu, P.; Chowdhury, A.; Lakhiani, V.K.; Jhala, A.S. A review on critical evaluation of natural ester vis-a-vis mineral oil insulating liquid for use in transformers: Part 1. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 873–880. [Google Scholar] [CrossRef]
- Scatiggio, F.; Pepe, F.; Sacco, S.; Serafino, C. Increased Loadability of Transformers Immersed in Natural Ester. In Proceedings of the IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, Italy, 23–27 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Baruah, N.; Maharana, M.; Nayak, S.K. Performance analysis of vegetable oil-based nanofluids used in transformers. IET Sci. Meas. Technol. 2019, 13, 995–1002. [Google Scholar] [CrossRef]
- Transformer Maintenance - Facilities Instructions, Standards, and Techniques; United States Department of the Interior Bureau of Reclamation: Washington, DC, USA, 2000.
- Serveron White Paper: DGA Diagnostic Methods; Serveron Corporation: Hillsboro, OH, USA, 2007.
- CIGRE. Advances in DGA Interpretation; CIGRE: Paris, France, 2019; Volume 771. [Google Scholar]
- Pattanadech, N.; Wattakapaiboon, W. Application of Duval Pentagon Compared with Other DGA Interpretation Techniques: Case Studies for Actual Transformer Inspections Including Experience from Power Plants in Thailand. In Proceedings of the 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST), Luang Prabang, Laos, 2–5 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Pattanadech, N.; Sasomponsawatline, K.; Siriworachanyadee, J.; Angsusatra, W. The conformity of DGA interpretation techniques: Experience from transformer 132 units. In Proceedings of the IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, Italy, 23–27 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Basuki, A.; Suwarno. Online Dissolved Gas Analysis of Power Transformers Based on Decision Tree Model. In Proceedings of the Conference on Power Engineering and Renewable Energy (ICPERE), Solo, Indonesia, 29–31 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Wattakapaiboon, W.; Pattanadech, N. The state of the art for dissolved gas analysis based on interpretation techniques. In Proceedings of the International Conference on Condition Monitoring and Diagnosis (CMD), Xi’an, China, 25–28 September 2016. [Google Scholar] [CrossRef]
- Golarz, J. Understanding Dissolved Gas Analysis (DGA) techniques and interpretations. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA, 3–5 May 2016. [Google Scholar] [CrossRef]
- Piotrowski, T.; Rozga, P.; Kozak, R. Analysis of excessive hydrogen generation in transformers in service. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3600–3607. [Google Scholar] [CrossRef]
- Bakar, N.A.; Abu-Siada, A.; Cui, H.; Li, S. Improvement of DGA interpretation using scoring index method. In Proceedings of the 1st International Conference on Electrical Materials and Power Equipment (ICEMPE), Xi’an, China, 14–17 May 2017. [Google Scholar] [CrossRef]
- Abu-Siada, A.; Islam, S. A new approach to identify power transformer criticality and asset management decision based on dissolved gas-in-oil analysis. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1007–1012. [Google Scholar] [CrossRef]
- Duval, M.; Dukarm, J. Improving the reliability of transformer gas-in-oil diagnosis. IEEE Electr. Insul. Mag. 2005, 21, 21–27. [Google Scholar] [CrossRef]
- CIGRE. Report on Gas Monitors for Oil-Filled Electrical Equipment; CIGRE: Paris, France, 2010; Volume 409. [Google Scholar]
- Calisto 2. Available online: https://www.morganschaffer.com/products.php?id=4 (accessed on 31 July 2018).
- Calisto 5. Available online: https://www.morganschaffer.com/products.php?id=2 (accessed on 31 July 2018).
- Calisto 9. Available online: https://www.morganschaffer.com/products.php?id=1 (accessed on 31 July 2018).
- SmartDGA Guard™. Available online: https://www.lumasenseinc.com/EN/products/gas-sensing/smart-dga-for-transformers/smart-dga-guard-4-gas/smartdga-guard.html (accessed on 31 July 2018).
- SmartDGA Guide™. Available online: https://www.lumasenseinc.com/EN/products/gas-sensing/smart-dga-for-transformers/smart-dga-guide-9-gas/smartdga-guide.html (accessed on 31 July 2018).
- Kelman MINITRANS Multiple Gas Transformer DGA. Available online: https://www.gegridsolutions.com/md/catalog/minitrans.htm (accessed on 31 July 2018).
- Hydran 201Ti Single Gas Transformer DGA. Available online: https://www.gegridsolutions.com/MD/catalog/hydran201Ti.htm (accessed on 31 July 2018).
- Hydran M2-X Single Gas Transformer DGA. Available online: https://www.gegridsolutions.com/MD/catalog/hydranm2x.htm (accessed on 31 July 2018).
- Kelman TAPTRANS Multiple Gas Transformer DGA. Available online: https://www.gegridsolutions.com/md/catalog/taptrans.htm (accessed on 31 July 2018).
- Kelman TRANSFIX Multiple Gas Transformer DGA. Available online: https://www.gegridsolutions.com/md/catalog/transfix.htm (accessed on 31 July 2018).
- Kelman MULTITRANS Multiple Gas Transformer DGA. Available online: https://www.gegridsolutions.com/md/catalog/multitrans.htm (accessed on 31 July 2018).
- Kelman DGA 900 Multiple Gas Transformer DGA. Available online: https://www.gegridsolutions.com/md/catalog/DGA900.htm (accessed on 31 July 2018).
- Moisture, Hydrogen and Temperature Transmitter MHT410. Available online: https://www.vaisala.com/en/products/instruments-sensors-and-other-measurement-devices/instruments-industrial-measurements/mht410 (accessed on 31 July 2018).
- Optimus™ DGA Monitor OPT100. Available online: https://www.vaisala.com/en/products/instruments-sensors-and-other-measurement-devices/instruments-industrial-measurements/opt100 (accessed on 31 July 2018).
- CoreSense™ Gives Continuous Online Monitoring of Transformer Gases, Such as Hydrogen and Moisture. Available online: https://new.abb.com/products/transformers/service/advanced-services/coresense (accessed on 31 July 2018).
- CoreSense M10 Multi-Gas DGA Analyzer. Available online: https://new.abb.com/products/transformers/service/advanced-services/coresense-m10 (accessed on 31 July 2018).
- DGA 150/250/400 Submersible Single Gas Monitor. Available online: https://www.qualitrolcorp.com/products/dissolved-gas-analyzers/single-gas-analyzers/qualitrol-dga-150250400-submersible-single-gas-monitor/ (accessed on 31 July 2018).
- Serveron® TM1 Single Gas On-line Dissolved Gas Monitor. Available online: https://www.qualitrolcorp.com/products/dissolved-gas-analyzers/single-gas-analyzers/serveron-tm1-single-gas-on-line-dissolved-gas-monitor/ (accessed on 31 July 2018).
- Multi Gas Serveron® TM3 On-line Gas Chromatography Dissolved Gas Monitor. Available online: https://www.qualitrolcorp.com/products/dissolved-gas-analyzers/multi-gas-analyzers/serveron-tm3-multi-gas-analyzer-multi-gas-on-line-dissolved-gas-monitor/ (accessed on 31 July 2018).
- Multi Gas Serveron® TM8 On-line Gas Chromatography Dissolved Gas Monitor. Available online: https://www.qualitrolcorp.com/products/dissolved-gas-analyzers/multi-gas-analyzers/serveron-tm8-multi-gas-on-line-dissolved-gas-monitor/ (accessed on 31 July 2018).
- Hydrocal Early Warning. Available online: https://www.mte.ch/products/transformer-monitoring/early-warning-10026 (accessed on 31 July 2018).
- Hydrocal 1004 GenX. Available online: https://www.mte.ch/products/transformer-monitoring/hydrocal-genx-10024 (accessed on 31 July 2018).
- Hydrocal Intensive Care. Available online: https://www.mte.ch/products/transformer-monitoring/intensive-care-10023 (accessed on 31 July 2018).
- SITRAM H2 Guard—Early Fault Detection in Transformer Oil. Available online: https://www.energy.siemens.com/hq/en/services/power-transmission-distribution-smart-grid/condition-monitoring/for-hv-gis/sensors-and-accessories.htm (accessed on 12 November 2018).
- SITRAM Multisense 5—Monitoring and Diagnostics. Available online: https://www.siemens.com/content/dam/webassetpool/mam/tag-siemens-com/smdb/energy-management/services-power-transmission-power-distribution-smart-grid/customer-services/cs-ff-en-sitram-multisense-9-v-1-2.pdf (accessed on 12 November 2018).
- SITRAM Multisense 9—Monitoring and Diagnostics. Available online: https://www.siemens.com/content/dam/webassetpool/mam/tag-siemens-com/smdb/energy-management/services-power-transmission-power-distribution-smart-grid/customer-services/cs-ff-en-sitram-multisense-9-v-1-2.pdf (accessed on 12 November 2018).
- TOTUS G5-DGA. Available online: https://www.camlingroup.com/product/totus-g5 (accessed on 12 November 2018).
- TOTUS G9-DGA. Available online: https://www.camlingroup.com/product/totus-mt (accessed on 12 November 2018).
- Chauhan, P.S.; Bhattacharya, S. Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: A review. Int. J. Hydrog. Energy 2019. [Google Scholar] [CrossRef]
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Dennison, J.C.; Trout, J.M. Transformer oil DGA monitoring technology study 2015. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA, 2–5 May 2016. [Google Scholar] [CrossRef]
- Yunusa, Z.; Hamidon, M.N.; Kaiser, A.; Awang, Z. Gas Sensors—A Review. Sens. Transducers J. 2014, 168, 61–75. [Google Scholar]
- Bakar, N.; Abu-Siada, A.; Islam, S. A review of dissolved gas analysis measurement and interpretation techniques. IEEE Electr. Insul. Mag. 2014, 30, 39–49. [Google Scholar] [CrossRef]
- Instrument Engineers’ Handbook, Vol. 1: Process Measurement and Analysis; CRC Press: Boca Raton, FL, USA, 2003.
- Kolb, B.; Ettre, L.S. Static Headspace-Gas Chromatography; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Soria, A.C.; García-Sarrió, M.J.; Ruiz-Matute, A.I.; Sanz, M.L. Headspace Techniques for Volatile Sampling. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 255–278. [Google Scholar]
- Soria, A.; García-Sarrió, M.; Sanz, M. Volatile sampling by headspace techniques. TrAC Trends Anal. Chem. 2015, 71, 85–99. [Google Scholar] [CrossRef]
- IEEE Guide for Application for Monitoring Equipment to Liquid-Inmersed Transformers and Components; IEEE: Piscataway, NJ, USA, 2012.
- Wang, M.; Vandermaar, A.; Srivastava, K. Review of condition assessment of power transformers in service. IEEE Electr. Insul. Mag. 2002, 18, 12–25. [Google Scholar] [CrossRef]
- CIGRE. Recent Developments in DGA Intrepretation; CIGRE: Paris, France, 2006; Volume 296. [Google Scholar]
- Duval, M. Calculation of DGA Limit Values and Sampling Intervals in Transformers in Service. IEEE Electr. Insul. Mag. 2008, 24, 7–13. [Google Scholar] [CrossRef]
- Li, Y.L.; Chen, Z.Y. Evaluation of On-Line DGA Limit Values and Calculation of Detecting Intervals for On-Line Monitoring Equipment for Transformers. Adv. Mater. Res. 2014, 986–987, 1643–1646. [Google Scholar] [CrossRef]
Item | Condition Criteria | Item | Condition Criteria |
---|---|---|---|
1 | DGA | 13 | Main Tank Corrosion |
2 | Load History | 14 | Cooling Equipment |
3 | Power Factor | 15 | Oil Tank Corrosion |
4 | Infra-Red | 16 | Foundation |
5 | Oil Quality | 17 | Grounding |
6 | Overall Condition | 18 | Gaskets, Seals |
7 | Furan or Age | 19 | Connectors |
8 | Turns Ratio | 20 | Oil Leaks |
9 | Leakage Reactance | 21 | Oil Level |
10 | Winding Resistance | 22 | DGA of LTC |
11 | Core-to-Ground | 23 | LTC Oil Quality |
12 | Bushing Condition | 24 | Overall LTC Condition |
Fault | Gas Generated | ||
---|---|---|---|
CO | H | HO | |
Cellulose aging | x | x | |
Mineral oil decomposition | x | ||
Leaks into oil | x | ||
Thermal decomposition of cellulose | x | x | |
Overheated transformer core | x | x | |
Thermal faults in oil (150 to 300 C) | x | ||
Thermal faults in oil 300 to 700 C) | x | ||
Thermal faults in oil (> 700 C) | x | ||
Partial discharge | x | ||
Arcing | x |
Method | Description | Fault Identification and Normal Aging | Gas Used |
---|---|---|---|
Key Gas Method (KGM) | Uses individual gas concentrations to identify the fault | PD, arcing, overheated oil, overheated cellulose | CO, H, CH, CH |
Doernenburg Ratio Method (DRM) | Uses four gas concentration ratios: | Thermal decomposition, PD, arcing | H, CH, CH CH, CH |
Rogers Ratio Method (RRM) | Uses three gas concentration ratios: | Normal aging, PD, arcing, low temperature fault, thermal fault <700 C, thermal fault >700 C | H, CH, CH CH, CH |
IEC Ratio Method (IRM) | Uses three gas concentration ratios: | PD, low energy discharge, high energy discharge, thermal faults <300 C, between 300 and 700 C, and >700 C | H, CH, CH CH, CH |
Duval Triangle Method (DTM) | Uses three gases corresponding to the increasing energy content or temperature of the faults | PD, low energy discharge, high energy discharge, thermal faults <300 C, between 300 and 700 C, and >700 C | CH, CH CH |
Duval Pentagon Method (DPM) | Uses five gases corresponding to the increasing energy content or temperature of the faults | Normal aging, PD, low energy discharge, high energy discharge, thermal faults <300 C, between 300 and 700 C, and >700 C | H, CH, CH CH, CH |
Manufacturer | Equipment | Measurement Technology | Gas Extraction | Consumables | Automatic Calibration | Installation |
---|---|---|---|---|---|---|
Morgan Schaffer | Calisto 2 [58] | TCD | PTFE | 2 V | ||
Calisto 5 [59] | GC | PTFE | Calibration and carrier gases | Every 24 hours | 2 V | |
Calisto 9 [60] | GC | PTFE | Calibration and carrier gases | Every 24 hours | 2 V | |
LumaSense | SmartDGA Guard [61] | NDIR + FC | Membrane | H sensor | After sensor replacement | 1 V or 2 V |
SmartDGA Guide [62] | NDIR + FC | Membrane | H and O sensor | After sensor replacement | 1 V or 2 V | |
GE | Minitrans [63] | PAS | Headspace | 2 V | ||
Hydran 201Ti [64] | FC | Membrane | 1 V | |||
Hydran M2-X [65] | FC | Membrane | H sensor | 1 V | ||
Taptrans [66] | PAS | Headspace | 2 V | |||
Transfix [67] | PAS | Headspace | 2 V | |||
Multitrans [68] | PAS | Headspace | 2 V | |||
DGA 900 [69] | PAS | Headspace | 2 V | |||
Vaisala | MHT 410 [70] | IC | Headspace | 1 V | ||
OPT 100 [71] | IR | Headspace | 2 V | |||
ABB | CoreSense [72] | IC | Headspace | 1 V | ||
CoreSense M10 [73] | IC + FTIR | Headspace | 1 V | |||
Qualitrol | DGA 150 [74] | IC | Headspace | 1 V | ||
TM1 [75] | IC | Headspace | 1 V | |||
TM3 [76] | GC | Membrane | Calibration and carrier gases | Every 3 days | 2 V | |
TM8 [77] | GC | Membrane | Calibration and carrier gases | Every 3 days | 2 V | |
MTE | Hydrocal 1003 [78] | Micro-electronic sensor + Electrochemical cell | Membrane | 1 V | ||
Hydrocal 1004 GenX [79] | Micro-electronic sensor + NIR | Membrane | 1 V | |||
Hydrocal 1005 [78] | Micro-electronic sensor + NIR | Membrane | 1 V | |||
Hydrocal 1008 [80] | Micro-electronic sensor + NIR | Membrane | 1 V | |||
Hydrocal 1009 [80] | Micro-electronic sensor + NIR | Membrane | 1 V | |||
SIEMENS | SITRAM H2Guard [81] | IC | Headspace | 1 V | ||
SITRAM Multisense 5 [82] | Micro-electronic sensor + NIR | Headspace | 1 V | |||
SITRAM Multisense 9 [83] | Micro-electronic sensor + NIR | Headspace | 1 V | |||
CAMLIN | TOTUS G5 [84] | IR | – | 2 V | ||
TOTUS G9 [85] | PAS | – | 2 V |
Technology | Advantages | Disadvantages |
---|---|---|
GC | Wide range of fault gases Highest accuracy and repeatability | Long time required to complete a test Expensive Frequent calibrations needed Auxiliary (carrier) gas needed Maintenance cost |
PAS | Wide range of fault gases Can detect/measure very low (ppm and ppb) gas concentrations Low maintenance | Results are sensitive to the wave number range of the optical filters and their absorption characteristics Accuracy influenced by temperature, pressure, and vibration Limited ability to measure high gas concentrations Interfering gases can effect accuracy |
IC | Operate under extreme temperatures, vibration, or in corrosive atmospheres | Limited ability to detect very low gas concentrations |
TCD | Fast response Stable Wide measuring range Simple construction Robust | Sensitive to interfering gases Reaction due to heating wire Heating element reacts with gas |
NDIR | Simultaneous multi-gas measurement No required calibrations Low maintenance Fast gas measurement time | Limited ability to detect very low gas concentrations Interfering gases can effect accuracy |
IR | Uses only physical technique Can be used in inert atmospheres | Not all gases have IR absorption Sequential monitoring is slower on multi point analyzers and also more user expertise required |
NIR | Simultaneous multi-gas measurement Non-frequent calibrations Low maintenance | Limited ability to measure high gas concentrations Interfering gases can effect accuracy |
FTIR | Simultaneous multi-gas measurement | Accuracy influenced by moisture |
FC | Small size | Periodic replacement Single gas measurement |
Micro-electronic sensor | Small size | Single gas measurement |
Electrochemical cell | Small size Working at high temperature is possible | Frequent calibrations needed Short/limited life time Single gas measurement Cross sensitivity to other gases |
Equipment | Hydrogen (H) | Carbon Monoxide (CO) | Moisture | Other Gases |
---|---|---|---|---|
Calisto 2 | x | x | x | |
SmartDGA Guard | x | x | x | CH and CO |
Minitrans | x | x | x | CH |
Hydran 201Ti | x | |||
Hydran M2-X | x | x | ||
MHT410 | x | x | ||
CoreSense | x | x | ||
DGA 150 | x | |||
Serveron TM1 | x | optional | ||
Hydrocal 1003 | x | x | x | |
Hydrocal 1004 GenX | x | x | x | CH |
Hydrocal 1005 | x | x | x | CH and CH |
H2 Guard | x | |||
Multisense 5 | x | x | x | CH and CH |
Equipment | Measurement Range (ppm) | Accuracy | Repeatability |
---|---|---|---|
Calisto 2 | 2–50.000 | ppm or % | ppm or % |
SmartDGA Guard | 5–10.000 | ppm or % | – |
Minitrans | 5–5.000 | ppm or % | – |
Hydran 201Ti | 25-2.000 | ppm or % | ppm or % |
Hydran M2-X | 25–2.000 | ppm or % | ppm or % |
MHT410 | 0–5.000 | ppm or % | ppm or % |
CoreSense | 0–5.000 | ppm or % | – |
DGA 150 | 50–5.000 | ppm or % | ppm or % |
Serveron TM1 | 20–10.000 | ppm or % | ppm or % |
Hydrocal 1003 | 0–2.000 | ppm or % | – |
Hydrocal 1004 GenX | 0–6.000 | ppm or % | – |
Hydrocal 1005 | 0–2.000 | ppm or % | – |
H2 Guard | 25–5.000 | ppm or % | ppm or % |
Multisense 5 | 0–2.000 | ±LDL ppm or % | – |
Equipment | Measurement Range (ppm) | Accuracy | Repeatability |
---|---|---|---|
Calisto 2 | 25–100.000 | ppm or % | ppm or % |
SmartDGA Guard | 10–10.000 | ppm or % | – |
Minitrans | 10–50.000 | ppm or % | – |
Hydran 201Ti | |||
Hydran M2-X | |||
MHT410 | |||
CoreSense | |||
DGA 150 | |||
Serveron TM1 | |||
Hydrocal 1003 | 0–2.000 | ppm or % | – |
Hydrocal 1004 GenX | 0–6.000 | ppm or % | – |
Hydrocal 1005 | 0–2.000 | ppm or % | – |
H2 Guard | |||
Multisense 5 | 0–5.000 | ±LDL ppm or % | – |
Equipment | Measurement Range | Accuracy | Repeatability |
---|---|---|---|
Calisto 2 | 2–100% | ppm or % | ppm or % |
SmartDGA Guard | 1–99% | ppm or % | – |
Minitrans | 0–100% | % | – |
Hydran 201Ti | |||
Hydran M2-X | 0–100% | % | % |
MHT410 | 0–100% | % | – |
CoreSense | 0–100% | % | – |
DGA 150 | |||
Serveron TM1 | 0–100% | % | – |
Hydrocal 1003 | 0–100% | ppm or % | – |
Hydrocal 1004 GenX | 0–100% | ppm or % | – |
Hydrocal 1005 | 0–100% | ppm or % | – |
H2 Guard | |||
Multisense 5 | 0–100% | ±LDL ppm or % | – |
Equipment | 5 Gases | 7 Gases | 9 Gases | Moisture |
---|---|---|---|---|
Calisto 5 | x | x | ||
Calisto 9 | x | x | ||
SmartDGA Guide | x | x | ||
Taptrans | x | x | ||
Transfix | x | x | ||
Multitrans | x | x | ||
DGA 900 | x | x | ||
OPT100 | x | x | ||
CoreSense M10 | x | |||
Serveron TM3 | optional | |||
Serveron TM8 | x | optional | ||
Hydrocal 1008 | x | x | ||
Hydrocal 1009 | x | |||
Multisense 9 | x | |||
TOTUS G5 | x | x | ||
TOTUS G9 | x | x |
Equipment | H Range (ppm) | CO Range (ppm), | CH Range (ppm), | CHRange (ppm), | CHRange (ppm), | CHRange (ppm), | CORange (ppm), | O Range (ppm) | N Range (ppm), | CHRange (ppm), | CHRange (ppm), | Moisture Range, |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy and Repeatability | Accuracy and Repeatability | Accuracy and Repeatability | Accuracy and Repeatability | Accuracy and Repeatability | Accuracy and Repeatability | Accuracy and Repeatability | Accuracy and Repeatability | Accuracy and Repeatability | Accuracy and Repeatability | Accuracy and Repeatability | Accuracy and Repeatability | |
Calisto 5 | 0–20.000 ppm or % ppm or % | 0–30.000 ppm or % ppm or % | 0–100.000 ppm or % ppm or % | 0–100.000 ppm or % ppm or % | 0–200.000 ppm or % ppm or % | 2–100% ppm or % ppm or % | ||||||
Calisto 9 | 0–20.000 ppm or % ppm or % | 0–30.000 ppm or % ppm or % | 0–100.000 ppm or % ppm or % | 0–100.000 ppm or % ppm or % | 0–200.000 ppm or % ppm or % | 0–200.000 ppm or % ppm or % | 0–100.000 ppm or % ppm or % | 0–100.000 ppm or % ppm or % | 0–150.000 ppm or % ppm or % | 2–100% ppm or % ppm or % | ||
SmartDGA Guide | 5–10.000 ppm or % – | 10–10.000 ppm or % – | 2–50.000 ppm or % – | 0.5–10.000 ppm or % – | 2–50.000 ppm or % – | 2–20.000 ppm or % – | 10–20.000 ppm or % – | 500–50.000 ppm or % – | 5.000–100.000 ppm or % – | 1–99% ppm or % – | ||
Taptrans | 5–5.000 ppm or % – | 2–50.000 ppm or % – | 2–50.000 ppm or % – | 0.5–50.000 ppm or % – | 2–50.000 ppm or % – | 2–50.000 ppm or % – | 20–50.000 ppm or % – | 100–50.000 % – | 10.000–100.000 % – | 0–100% % – | ||
Transfix | 5–5.000 ppm or % – | 2–50.000 ppm or % – | 2–50.000 ppm or % – | 0.5–50.000 ppm or % – | 2–50.000 ppm or % – | 2–50.000 ppm or % – | 20–50.000 ppm or % – | 100–50.000 % – | 10.000–100.000 % – | 0–100% % – | ||
Multitrans | 5–5.000 ppm or % – | 2–50.000 ppm or % – | 2—50.000 ppm or % – | 0.5-50.000 ppm or % – | 2–50.000 ppm or % – | 2–50.000 ppm or % – | 20–50.000 ppm or % – | 100–50.000 % – | 10.000–100.000 % – | 0–100% % – | ||
DGA 900 | 5–5.000 ppm or % < 3% | 1–50.000 ppm or % < 2% | 2–50.000 ppm or % < 2% | 0.5–50.000 ppm or % < 2% | 1–50.000 ppm or % < 2% | 1–50.000 ppm or % < 2% | 20–50.000 ppm or % < 3% | 100–50.000 ppm or % < 2% | 10.000–100.000 % – | 0–100% % | ||
OPT100 | 0–5.000 ppm or % ppm or % | 0–10.000 ppm or % ppm or % | 0–10.000 ppm or % ppm or % | 0–5.000 ppm or % ppm or % | 0–10.000 ppm or % ppm or % | 0–10.000 ppm or % ppm or % | 0–10.000 ppm or % ppm or % | 0–100% ppm or % – | ||||
CoreSense M10 | 25–5.000 ppm or % – | 2–5.000 ppm or % – | 1–10.000 ppm or % – | 0.5–10.000 ppm or % – | 2–10.000 ppm or % – | 2–10.000 ppm or % – | 5–20.000 ppm or % – | 10–10.000 ppm or % – | 10–10.000 ppm or % – | 0–100% ppm or % – | ||
Serveron TM3 | 5–7.000 ppm or % < 1% | 1–3.000 ppm or % < 2% | 3–5.000 ppm or % < 1% | 0–100% % – | ||||||||
Serveron TM8 | 3–3.000 ppm or % < 2% | 5–10.000 ppm or % < 2% | 5–7.000 ppm or % < 1% | 1–3.000 ppm or % < 2% | 3–5.000 ppm or % < 1% | 5–5.000 ppm or % < 1% | 5–30.000 ppm or % < 1% | 30–25.000 ppm or % < 1% | 5.000–100.000 ppm or % < 20% | 0–100% % – | ||
Hydrocal 1008 | 0–2.000 ppm or % – | 0–5.000 ppm or % – | 0–2.000 ppm or % – | 0–2.000 ppm or % – | 0–2.000 ppm or % – | 0–2.000 ppm or % – | 0–20.000 ppm or % – | 0–100% ppm or % – | ||||
Hydrocal 1009 | 0–10.000 ppm or % – | 0–10.000 ppm or % – | 0–5.000 ppm or % – | 0–10.000 ppm or % – | 0–10.000 ppm or % – | 0–10.000 ppm or % – | 0–20.000 ppm or % – | 0–50.000 ppm or % – | 0–100% ppm or % – | |||
Multisense 9 | 0–10.000 ±LDL or % – | 0–10.000 ±LDL or % – | 0–5.000 ±LDL or % – | 0–10.000 ±LDL or % – | 0–10.000 ±LDL or % – | 0–10.000 ±LDL or % – | 0–20.000 ±LDL or % – | 0–50.000 ±LDL or % – | 0–100% ±LDL or % – | |||
TOTUS G5 | 5–5.000 ppm or % – | 10–20.000 ppm or % – | 30–60.000 ppm or % – | 3–5.000 ppm or % – | 5–90.000 ppm or % – | 0–100% – – | ||||||
TOTUS G9 | 0–5.000 ppm or % – | 1–50.000 ppm or % – | 1-50.000 ppm or % – | 0.1–50.000 ppm or % – | 1–50.000 ppm or % – | 1–50.000 ppm or % – | 3–50.000 ppm or % – | 100–505.000 % – | 10.000–150.000 % – | 0–100% – – |
Equipment | Analogue Input | Analogue Output | |
---|---|---|---|
Fault detection monitor | Calisto 2 | (oil temperature sensor) | |
Smart DGA Guard | x | x | |
Minitrans | (load sensor) | x | |
Hydran 201Ti | x | ||
Hydran M2-X | |||
MHT410 | x | ||
CoreSense | |||
DGA 150 | x | ||
Serveron TM1 | |||
Hydrocal 1003 | + or | ||
Hydrocal 1004 GenX | optional | optional 1 | |
Hydrocal 1005 | optional: + or | ||
H2 Guard | |||
Multisense 5 | optional: | ||
Fault diagnosis monitor | Calisto 5 | optional: | optional: |
Calisto 9 | optional: | optional: | |
Smart DGA Guide | x | x | |
Taptrans | optional 1 | ||
Transfix | optional 1 | ||
Multitrans | optional 1 | ||
DGA 900 | optional: | optional 1 | |
OPT100 | x | x | |
CoreSense M10 | |||
Serveron TM3 | x | ||
Serveron TM8 | x | ||
Hydrocal 1008 | optional: + or | ||
Hydrocal 1009 | optional: + or | ||
Multisense 9 | optional: | ||
TOTUS G5 | - | ||
TOTUS G9 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante, S.; Manana, M.; Arroyo, A.; Castro, P.; Laso, A.; Martinez, R. Dissolved Gas Analysis Equipment for Online Monitoring of Transformer Oil: A Review. Sensors 2019, 19, 4057. https://doi.org/10.3390/s19194057
Bustamante S, Manana M, Arroyo A, Castro P, Laso A, Martinez R. Dissolved Gas Analysis Equipment for Online Monitoring of Transformer Oil: A Review. Sensors. 2019; 19(19):4057. https://doi.org/10.3390/s19194057
Chicago/Turabian StyleBustamante, Sergio, Mario Manana, Alberto Arroyo, Pablo Castro, Alberto Laso, and Raquel Martinez. 2019. "Dissolved Gas Analysis Equipment for Online Monitoring of Transformer Oil: A Review" Sensors 19, no. 19: 4057. https://doi.org/10.3390/s19194057
APA StyleBustamante, S., Manana, M., Arroyo, A., Castro, P., Laso, A., & Martinez, R. (2019). Dissolved Gas Analysis Equipment for Online Monitoring of Transformer Oil: A Review. Sensors, 19(19), 4057. https://doi.org/10.3390/s19194057