Analysis of Scattering by Plasmonic Gratings of Circular Nanorods Using Lattice Sums Technique
Abstract
1. Introduction
2. Formulation of the Problem
3. Numerical Results and Discussions
3.1. Light Scattering by Multlayered Structures of Plasmonic Nanocylinders with and without Defects
3.2. Coupling between Plasmonic Grating and a Dielectric Slab for Application as a Refractive Index Sensor
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Kravets, V.; Schedin, F.; Grigorenko, A. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 2008, 101, 087403. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.; Ternovsky, V. Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field. Phys. Rev. B 2006, 73, 235432. [Google Scholar] [CrossRef]
- Nguyen-Huu, N.; Cada, M.; Pistora, J. Imperfectly geometric shapes of nanograting structures as solar absorbers with superior performance for solar cells. Opt. Express 2014, 22, A282–A294. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Fan, S. Superscattering of light from subwavelength nanostructures. Phys. Rev. Lett. 2010, 105, 013901. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Shadrivov, I.V.; Miroshnichenko, A.E.; Kivshar, Y.S. Cloaking and enhanced scattering of core-shell plasmonic nanowires. Opt. Express 2013, 21, 10454–10459. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Huu, N.; Cada, M.; Pistora, J.; Yasumoto, K. Tunable optical filter based on gold and silver double-sided gratings and its application as plasmonic sensor. J. Lightwave Technol. 2014, 32, 3477–3484. [Google Scholar] [CrossRef]
- Natarov, D.; Sauleau, R.; Nosich, A. Periodicity-enhanced plasmon resonances in the scattering of light by sparse finite gratings of circular silver nanowires. IEEE Photonics Technol. Lett. 2012, 24, 43–45. [Google Scholar]
- Mayer, K.; Hafner, J. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Wei, H.; Zhang, S.; Xu, H. Recent advances in plasmonic sensors. Sensors 2014, 14, 7959–7973. [Google Scholar] [CrossRef] [PubMed]
- Yasumoto, K.; Toyama, H.; Kushta, T. Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique. IEEE Trans. Antennas Propag. 2004, 52, 2603–2611. [Google Scholar] [CrossRef]
- Yasumoto, K. Electromagnetic Theory and Applications for Photonic Crystals; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Jandieri, V.; Baccarelli, P.; Valerio, G.; Schettini, G. 1-D periodic lattice sums for complex and leaky waves in 2-D structures using higher-order Ewald formulation. IEEE Trans. Antennas Propag. 2019, 67, 2364–2378. [Google Scholar] [CrossRef]
- Jandieri, V.; Yasumoto, K. Electromagnetic scattering by layered cylindrical arrays of circular rods. IEEE Trans. Antennas Propag. 2011, 59, 2437–2441. [Google Scholar] [CrossRef]
- Felbacq, D.; Tayeb, G.; Maystre, D. Scattering by a random set of parallel cylinders. J. Opt. Soc. Am. A 1994, 11, 2526–2538. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Jandieri, V.; Yasumoto, K.; Jia, H. Effect of Periodic Defects on Electromagnetic Scattering by Two-Dimensional Photonic Crystals. J. Infrared Millim. Waves 2006, 27, 301–317. [Google Scholar] [CrossRef]
- Jandieri, V.; Okropiridze, L.; Yasumoto, K.; Erni, D.; Pistora, J. Efficient Analysis Method of Light Scattering by a Grating of Plasmonic Nanorods. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2018, 37, 1436–1448. [Google Scholar] [CrossRef]
- Jandieri, V.; Yasumoto, K.; Pistora, J. Rigorous analysis of electromagnetic scattering by grating of plasmonic nanorods coupled to magneto-optical slab. IEEE Trans. Magn. 2017, 53, 1000306. [Google Scholar] [CrossRef]
- Jia, H.; Yasumoto, K.; Toyama, H. Reflection and transmission properties of layered periodic arrays of circular cylinders embedded in magnetized ferrite slab. IEEE Trans. Antennas Propag. 2005, 53, 1145–1153. [Google Scholar]
- Luk’yanchuk, B.; Zheludev, N.; Maier, S.; Halas, N.; Nordlander, P.; Giessen, H.; Chong, C. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jandieri, V.; Yasumoto, K.; Pistora, J.; Erni, D. Analysis of Scattering by Plasmonic Gratings of Circular Nanorods Using Lattice Sums Technique. Sensors 2019, 19, 3923. https://doi.org/10.3390/s19183923
Jandieri V, Yasumoto K, Pistora J, Erni D. Analysis of Scattering by Plasmonic Gratings of Circular Nanorods Using Lattice Sums Technique. Sensors. 2019; 19(18):3923. https://doi.org/10.3390/s19183923
Chicago/Turabian StyleJandieri, Vakhtang, Kiyotoshi Yasumoto, Jaromir Pistora, and Daniel Erni. 2019. "Analysis of Scattering by Plasmonic Gratings of Circular Nanorods Using Lattice Sums Technique" Sensors 19, no. 18: 3923. https://doi.org/10.3390/s19183923
APA StyleJandieri, V., Yasumoto, K., Pistora, J., & Erni, D. (2019). Analysis of Scattering by Plasmonic Gratings of Circular Nanorods Using Lattice Sums Technique. Sensors, 19(18), 3923. https://doi.org/10.3390/s19183923