Next Article in Journal
Methodical Approach for Determining the Length of Drill Channels in Osteosynthesis
Previous Article in Journal
Model Free Localization with Deep Neural Architectures by Means of an Underwater WSN
Previous Article in Special Issue
Measurement of Dynamic Responses from Large Structural Tests by Analyzing Non-Synchronized Videos
Article Menu

Export Article

Open AccessArticle

A Comparative Study of Computational Methods for Compressed Sensing Reconstruction of EMG Signal

DII—Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Sensors 2019, 19(16), 3531; https://doi.org/10.3390/s19163531
Received: 12 July 2019 / Revised: 1 August 2019 / Accepted: 9 August 2019 / Published: 13 August 2019
  |  
PDF [711 KB, uploaded 13 August 2019]
  |  

Abstract

Wearable devices offer a convenient means to monitor biosignals in real time at relatively low cost, and provide continuous monitoring without causing any discomfort. Among signals that contain critical information about human body status, electromyography (EMG) signal is particular useful in monitoring muscle functionality and activity during sport, fitness, or daily life. In particular surface electromyography (sEMG) has proven to be a suitable technique in several health monitoring applications, thanks to its non-invasiveness and ease to use. However, recording EMG signals from multiple channels yields a large amount of data that increases the power consumption of wireless transmission thus reducing the sensor lifetime. Compressed sensing (CS) is a promising data acquisition solution that takes advantage of the signal sparseness in a particular basis to significantly reduce the number of samples needed to reconstruct the signal. As a large variety of algorithms have been developed in recent years with this technique, it is of paramount importance to assess their performance in order to meet the stringent energy constraints imposed in the design of low-power wireless body area networks (WBANs) for sEMG monitoring. The aim of this paper is to present a comprehensive comparative study of computational methods for CS reconstruction of EMG signals, giving some useful guidelines in the design of efficient low-power WBANs. For this purpose, four of the most common reconstruction algorithms used in practical applications have been deeply analyzed and compared both in terms of accuracy and speed, and the sparseness of the signal has been estimated in three different bases. A wide range of experiments are performed on real-world EMG biosignals coming from two different datasets, giving rise to two different independent case studies. View Full-Text
Keywords: compressed sensing; signal reconstruction; surface electromyography; biosignal; sensors; wireless sensor networks compressed sensing; signal reconstruction; surface electromyography; biosignal; sensors; wireless sensor networks
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Manoni, L.; Turchetti, C.; Falaschetti, L.; Crippa, P. A Comparative Study of Computational Methods for Compressed Sensing Reconstruction of EMG Signal. Sensors 2019, 19, 3531.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top