Design of the Squared Daisy: A Multi-Mode Energy Harvester, with Reduced Variability and a Non-Linear Frequency Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Operating Principle of the Squared Daisy
2.2. Vibration Enhancement Petals
2.3. Resilience to Process Variation
3. Fabrication
4. Measurement Results
4.1. Characterization Using a Vector Network Analyzer
4.2. Characterization Using a Vibrometer
4.3. Characterization Using a Shaker
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jia, Y.; Du, S.; Seshia, A.A. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting. Sci. Rep. 2016, 6, 30167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyabur, R.M.; Salauddin, M.; Park, J.Y. Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration. Ceram. Int. 2017, 43, 675–681. [Google Scholar] [CrossRef]
- Iannacci, J.; Serra, E.; Sordo, G.; Bonaldi, M.; Borrielli, A.; Schmid, U.; Bittner, A.; Schneider, M.; Kuenzig, T.; Schrag, G.; et al. MEMS-based multi-modal vibration energy harvesters for ultra-low power autonomous remote and distributed sensing. Microsyst. Technol. 2018, 24, 5027–5036. [Google Scholar] [CrossRef]
- Nabavi, S.; Zhang, L. Frequency Tuning and Efficiency Improvement of Piezoelectric MEMS Vibration Energy Harvesters. J. Microelectromech. Syst. 2019, 28, 77–87. [Google Scholar] [CrossRef]
- Vyas, A.; Staaf, H.; Rusu, C.; Ebefors, T.; Liljeholm, J.; Smith, A.D.; Lundgren, P.; Enoksson, P. A Micromachined Coupled-Cantilever for Piezoelectric Energy Harvesters. Micromachines 2018, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Brini, O.; Deslandes, D.; Nabki, F. A System-Level Methodology for the Design of Reliable Low-Power Wireless Sensor Networks. Sensors 2019, 19, 1800. [Google Scholar] [CrossRef] [PubMed]
- Erturk, A.; Inman, D.J. Front Matter. In Piezoelectric Energy Harvesting; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Priya, S.; Inman, D.J. (Eds.) Energy Harvesting Technologies; Springer: Raleigh, NC, USA, 2009. [Google Scholar]
- Podder, P.; Constantinou, P.; Mallick, D.; Amann, A.; Roy, S. Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester. J. Microelectromech. Syst. 2017, 26, 539–549. [Google Scholar] [CrossRef]
- Markowski, P. Thermoelectric energy harvester fabricated in thick-film/LTCC technology. Microelectron. Int. 2014, 31, 176–185. [Google Scholar] [CrossRef]
- Fowler, A.G.; Moheimani, S.O.R. A 4-DOF MEMS Energy Harvester Using Ultrasonic Excitation. IEEE Sens. J. 2016, 16, 7774–7783. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, 175–195. [Google Scholar] [CrossRef]
- Iannacci, J.; Sordo, G.; Serra, E.; Schmid, U. A novel MEMS-based piezoelectric multi-modal vibration energy harvester concept to power autonomous remote sensing nodes for Internet of Things (IoT) applications. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Brand, O.; Dufour, I.; Heinrich, S.; Josse, F.; Fedder, G.K.; Hierold, C.; Korvink, J.G.; Tabata, O. (Eds.) Resonant MEMS: Fundamentals, Implementation, and Application; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Yu, H.; Zhou, J.; Deng, L.; Wen, Z. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit. Sensors 2014, 14, 3323–3341. [Google Scholar] [CrossRef] [PubMed]
- Chew, Z.; Li, L. Design and characterisation of a piezoelectric scavenging device with multiple resonant frequencies. Sens. Actuators A Phys. 2010, 162, 82–92. [Google Scholar] [CrossRef]
- Li, S.; Crovetto, A.; Peng, Z.; Zhang, A.; Hansen, O.; Wang, M.; Li, X.; Wang, F. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency. Sens. Actuators A Phys. 2016, 247, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Seddik, B.A.; Despesse, G.; Boisseau, S.; Defay, E. Strategies for Wideband Mechanical Energy Harvester; IntechOpen: London, UK, 2012. [Google Scholar]
- Zhu, D.; Beeby, S.P. Scaling effects for piezoelectric energy harvesters. In Proceedings of the Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems, Barcelona, Spain, 21 May 2015; p. 95170. [Google Scholar]
- Alameh, A.; Gratuze, M.; Elsayed, M.; Nabki, F. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters. Sensors 2018, 18, 1584. [Google Scholar] [CrossRef] [PubMed]
- Alameh, A.H.; Gratuze, M.; Robichaud, A.; Nabki, F. Study and Design of MEMS Cross-Shaped Piezoelectric Vibration Energy Harvesters. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018; pp. 305–308. [Google Scholar]
- Dompierre, A.; Vengallatore, S.; Fréchette, L.G.; Vengallatore, S.; Fréchette, L.G. Piezoelectric Vibration Energy Harvesters Modeling, Design, Limits, and Benchmarking. In Energy Harvesting with Functional Materials and Microsystems; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Beeby, S.P. Energy Harvesting Devices. In Resonant MEMS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 451–474. [Google Scholar]
- Dhote, S.; Yang, Z.; Zu, J. Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester. Mech. Syst. Signal Process. 2018, 98, 268–280. [Google Scholar] [CrossRef]
- Yaghootkar, B.; Azimi, S.; Bahreyni, B. Wideband piezoelectric mems vibration sensor. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Hoffmann, D.; Bechtold, T.; Hohlfeld, D. Design optimization of MEMS piezoelectric energy harvester. In Proceedings of the 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Montpellier, France, 18–20 April 2016; pp. 1–6. [Google Scholar]
- Zhu, D.; Tudor, M.J.; Beeby, S.P. Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Meas. Sci. Technol. 2009, 21, 22001. [Google Scholar] [CrossRef]
- Cowen, A.; Hames, G.; Glukh, K.; Hardy, B. PiezoMUMPs Design Handbook; MEMSCAP Inc.: Crolles, France, 2014. [Google Scholar]
- Robichaud, A.; Deslandes, D.; Cicek, P.; Nabki, F. A Novel Topology for Process Variation-Tolerant Piezoelectric Micromachined Ultrasonic Transducers. J. Microelectromech. Syst. 2018, 27, 1204–1212. [Google Scholar] [CrossRef]
- Pons-Nin, J.; Gorreta, S.; Dominguez, M.; Blokhina, E.; O’Connell, D.; Feely, O. Design and test of resonators using PiezoMUMPS technology. In Proceedings of the 2014 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Cannes, France, 1–4 April 2014; pp. 1–6. [Google Scholar]
- Elsayed, M.Y.; Nabki, F. Piezoelectric Bulk Mode Disk Resonator Post-Processed for Enhanced Quality Factor Performance. J. Microelectromech. Syst. 2017, 26, 75–83. [Google Scholar] [CrossRef]
- Nabavi, S.; Zhang, L. Nonlinear Multi-mode Wideband Piezoelectric MEMS Vibration Energy Harvester. IEEE Sens. J. 2019, 19, 4837–4848. [Google Scholar] [CrossRef]
- Kovacic, I.; Brennan, M.J. The Duffing Equation: Nonlinear Oscillators and Their Behaviour; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Rezaeisaray, M.; Gowini, M.E.; Sameoto, D.; Raboud, D.; Moussa, W. Low frequency piezoelectric energy harvesting at multi vibration mode shapes. Sens. Actuators A Phys. 2015, 228, 104–111. [Google Scholar] [CrossRef]
- Wang, N.; Sun, C.; Siow, L.Y.; Ji, H.; Chang, P.; Zhang, Q.; Gu, Y. AlN wideband energy harvesters with wafer-level vacuum packaging utilizing three-wafer bonding. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 841–844. [Google Scholar]
- Aktakka, E.E.; Najafi, K. Three-axis piezoelectric vibration energy harvester. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 1141–1144. [Google Scholar]
Variant 1 | Variant 2 | Variant 3 | |
---|---|---|---|
Size of the design (µm) | 1700 | 1700 | 1700 |
Radius of the proof mass, Rm (µm) | 200 | 200 | 200 |
Separation on the VEP (µm) | 10 | 10 | 10 |
Radius of the circle of deposited piezo material on VEP(µm) | 500 | 500 | 500 |
Petals used as anchors | 1 3 5 7 9 11 13 15 | 1 5 9 13 | 3 7 11 15 |
Petals used as a VEP | 2 4 6 8 10 12 16 | 2 3 4 6 7 8 10 11 12 14 15 16 | 1 2 4 5 6 8 9 10 12 13 14 16 |
Variant 1 | Variant 2 | Variant 3 * | |
---|---|---|---|
Simulation (Hz) | 10,600 | 8100 | 7300 |
Median (Hz) | 10,680 | 8120 | 7286 |
Mean (Hz) | 10,637 | 8141 | 7308 |
Standard deviation (Hz) | 129 | 196 | 227 |
Standard deviation (%) | 1.21 | 2.41 | 3.11 |
Variant 1 | Variant 2 | Variant 3 | ||
---|---|---|---|---|
Resonant Mode 1 | Start Frequency (Hz) | 10,696 | 7466 | 3906 |
Measured | Simulated Resonant Frequency (Hz) | 10,860 | 10,800 | 7902 | 8100 | 3971 | 4050 | |
Stop Frequency (Hz) | 10,887 | 7922 | 4138 | |
Linearity | Non-linear | Non-linear | Non-linear | |
Resonant Mode 2 | Start Frequency (Hz) | 14,216 | 12,839 | 7098 |
Measured | Simulated Resonant Frequency (Hz) | 14,485 | 15,000 | 12,941 | 13,100 | 7166 | 7243 | |
Stop Frequency (Hz) | 14,507 | 12,973 | 7243 | |
Linearity | Non-linear | Non-linear | Linear | |
Resonant Mode 3 | Start Frequency (Hz) | -- | 20,744 | 12,688 |
Measured | Simulated Resonant Frequency (Hz) | -- | 20,871 | 20,987 | 12,757 | 12,833 | |
Stop Frequency (Hz) | -- | 20,987 | 12,833 | |
Linearity | -- | Non-linear | Linear |
Variant 2 | Variant 3 | [1] | [13] | [34] | [35] | [36] | |
---|---|---|---|---|---|---|---|
Volume (mm3) | 1.156 | 1.156 | 57.6 | 25.6 | 14.4 | 112 | 6500 |
Piezo material | AlN | AlN | AlN | AlN | AlN | AlN | PZT |
Operating bandwidth (Hz) | 7466–7922 | 3906–4138 | 730–1000 | 190 | 85–95 | 859.9–924.5 | 387–398 |
Linearity | Non-linear | Non-linear | Non-linear | Linear | Non-linear | Non-linear | Linear |
Acceleration (g) | 10 | 10 | 1 | 15 | 0,2 | 2 | 0.05 |
Output Voltage (mV) | 54.2 | 21.52 | 770.3 | 130 | 1000 | 4433 | 1000 |
Load | 150 kΩ | 150 kΩ | 70 kΩ | 1 MΩ | 1 MΩ | 100 kΩ | 1 MΩ |
Output Power (nW) | 20 | 3.1 | 1730 | 169 | 136 | 82240 | 52900 |
FOM nW·mm−3·g−2 | 0.17 | 0.3 | 30.03 | 0.03 | 236.11 | 183.82 | 3255 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gratuze, M.; Alameh, A.H.; Nabki, F. Design of the Squared Daisy: A Multi-Mode Energy Harvester, with Reduced Variability and a Non-Linear Frequency Response. Sensors 2019, 19, 3247. https://doi.org/10.3390/s19153247
Gratuze M, Alameh AH, Nabki F. Design of the Squared Daisy: A Multi-Mode Energy Harvester, with Reduced Variability and a Non-Linear Frequency Response. Sensors. 2019; 19(15):3247. https://doi.org/10.3390/s19153247
Chicago/Turabian StyleGratuze, Mathieu, Abdul Hafiz Alameh, and Frederic Nabki. 2019. "Design of the Squared Daisy: A Multi-Mode Energy Harvester, with Reduced Variability and a Non-Linear Frequency Response" Sensors 19, no. 15: 3247. https://doi.org/10.3390/s19153247
APA StyleGratuze, M., Alameh, A. H., & Nabki, F. (2019). Design of the Squared Daisy: A Multi-Mode Energy Harvester, with Reduced Variability and a Non-Linear Frequency Response. Sensors, 19(15), 3247. https://doi.org/10.3390/s19153247