Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film
Abstract
:1. Introduction
2. Principle and Sensor Fabrication
2.1. Principle and Experimental Setup
2.2. Sensor Fabrication
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alwis, L.; Sun, T.; Grattan, K.T.V. Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress. Measurement 2013, 46, 4052–4074. [Google Scholar] [CrossRef]
- Ascorve, J.; Corres, J.M.; Arregui, F.J.; Matias, I.R. Recent developments in fiber optics humidity sensors. Sensors 2017, 17, 893. [Google Scholar] [CrossRef]
- Ouyang, T.H.; Lin, L.M.; Xia, K.; Jiang, M.J.; Lang, Y.W.; Guan, H.Y.; Yu, J.H.; Li, D.Q.; Chen, G.L.; Zhu, W.G.; et al. Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing. Opt. Express 2017, 25, 9823–9833. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Shen, C.Y.; Lou, W.M.; Shentu, F.Y.; Zhong, C.A.; Dong, X.Y.; Tong, L.M. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide. Appl. Phys. Lett. 2016, 109, 031107. [Google Scholar]
- Irawati, N.; Rahman, H.A.; Yasin, M.; Al-Askari, S.; Hamida, B.A.; Ahmad, H.; Harun, S.W. Relative humidity sensing using a PMMA doped agarose gel microfiber. J. Lightw. Technol. 2017, 35, 3940–3944. [Google Scholar] [CrossRef]
- Ascorbe, J.; Corres, J.M.; Matias, I.R.; Arregui, F.J. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances. Sens. Actuators B Chem. 2016, 233, 7–16. [Google Scholar] [CrossRef]
- Huang, Y.M.; Zhu, W.G.; Li, Z.B.; Chen, G.L.; Chen, L.H.; Zhou, J.J.; Lin, H.; Guan, J.W.; Fang, W.X.; Liu, X.; et al. High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film. Sens. Actuators B Chem. 2018, 255, 57–69. [Google Scholar] [CrossRef]
- Liang, L.; Sun, H.; Liu, N.; Luo, H.; Gang, T.T.; Rong, Q.Z.; Qiao, X.G.; Hu, M.L. High-sensitivity optical fiber relative humidity probe with temperature calibration ability. Appl. Opt. 2018, 57, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.B.; Yin, M.J.; Zhang, A.P.; Qian, J.W.; He, S.L. Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer. Opt. Express 2011, 19, 4140–4146. [Google Scholar] [CrossRef]
- Woyessa, G.; Nielsen, K.; Stefani, A.; Markos, C.; Bang, O. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express 2016, 24, 1206–1213. [Google Scholar] [CrossRef]
- Liu, S.Q.; Ji, Y.K.; Yang, J.; Sun, W.M.; Li, H.Y. Nafion film temperature/humidity sensing based on optical fiber Fabry-Perot interference. Sens. Actuators A Phys. 2018, 269, 313–321. [Google Scholar] [CrossRef]
- Alwis, L.; Sun, T.; Grattan, K.T.V. Fibre optic long period grating-based humidity sensor probe using a Michelson interferometric arrangement. Sens. Actuators B Chem. 2013, 178, 694–699. [Google Scholar] [CrossRef]
- Urrutia, A.; Goicoechea, J.; Ricchiuti, A.L.; Barrera, D.; Sales, S.; Arregui, F.J. Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating. Sens. Actuators B Chem. 2016, 227, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.L.; Yan, G.F.; Lian, Z.G.; Chen, X.; Wu, S.N.; He, S.L. Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing. Sens. Actuators B Chem. 2018, 255, 1937–1944. [Google Scholar] [CrossRef]
- Thomas, P.J.; Hellevang, J.O. A fully distributed fibre optic sensor for relative humidity measurements. Sens. Actuators B Chem. 2017, 247, 284–289. [Google Scholar] [CrossRef]
- Wang, H.; Feng, C.D.; Sun, S.L.; Segre, C.U.; Stetter, J.R. Comparison of conductometric humidity-sensing polymers. Sens. Actuators B Chem. 2016, 40, 211–216. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Zhou, C.; Guo, Q.; Wang, T. Sensing characteristics of long-period fiber gratings written in thinned cladding fiber. IEEE Sens. J. 2016, 16, 1217–1223. [Google Scholar] [CrossRef]
- Zou, F.; Liu, Y.; Zhu, S.; Deng, C.; Dong, Y.; Wang, T. Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings. IEEE Sens. J. 2016, 16, 2460–2465. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, H.W.; Chiang, K.S.; Zhu, T.; Rao, Y.J. Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers. J. Lightw. Technol. 2009, 27, 857–863. [Google Scholar] [CrossRef]
- James, S.W.; Tatam, R.P. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 2003, 14, R49. [Google Scholar] [CrossRef]
- Zou, F.; Liu, Y.; Deng, C.; Dong, Y.; Zhu, S.; Wang, T. Refractive index sensitivity of nano-film coated long-period fiber gratings. Opt. Express 2015, 23, 1114–1124. [Google Scholar] [CrossRef]
- Yan, G.F.; Liang, Y.H.; Lee, E.H.; He, S.L. Novel Knob-integrated fiber Bragg grating sensor with polyvinyl alcohol coating for simultaneous relative humidity and temperature measurement. Opt. Express 2015, 23, 15624–15634. [Google Scholar] [CrossRef]
- Dong, X.Y.; Li, T.; Liu, Y.; Li, Y.; Zhao, C.L.; Chan, C.C. Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing. J. Biomed. Opt. 2011, 16, 077001. [Google Scholar] [CrossRef]
- Miao, Y.P.; Liu, B.; Zhang, H.; Li, Y.; Zhou, H.B.; Sun, H.; Zhang, W.H.; Zhao, Q.D. Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating. IEEE Photonics Technol. Lett. 2009, 21, 441–443. [Google Scholar] [CrossRef]
- Villar, I.D.; Matias, I.R.; Arregui, F.J. Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials. Opt. Lett. 2005, 30, 2363–2365. [Google Scholar] [CrossRef]
- Ma, Q.F.; Tou, Z.Q.; Ni, K.; Lim, Y.Y.; Lin, Y.F.; Wang, Y.R.; Zhou, M.H.; Shi, F.F.; Niu, L.; Dong, X.Y.; et al. Carbon-nanotube/Polyvinyl alcohol coated thin core fiber sensor for humidity measurement. Sens. Actuators B Chem. 2018, 257, 800–806. [Google Scholar] [CrossRef]
- Venugopalan, T.; Yeo, T.L.; Sun, T.; Grattan, K.T.V. LPG-based PVA coated sensor for relative humidity measurement. IEEE Sens. J. 2008, 8, 1093–1098. [Google Scholar] [CrossRef]
- Koyamada, Y. Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings. IEEE Photonics Technol. Lett. 2001, 13, 308–310. [Google Scholar] [CrossRef]
- Patrick, H.J.; Kersey, A.D.; Bucholtz, F. Analysis of the response of long period fiber gratings to external index of refraction. J. Lightw. Technol. 1998, 16, 1606. [Google Scholar] [CrossRef]
- Shu, X.W.; Zhang, L.; Bennion, I. Sensitivity characteristics of long-period fiber gratings. J. Lightw. Technol. 2002, 20, 255–266. [Google Scholar]
- Woyessa, G.; Fasano, A.; Markos, C.; Rasmussen, H.K.; Bang, O. Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing. IEEE Photonic. Technol. Lett. 2017, 29, 575–578. [Google Scholar] [CrossRef]
- Fu, H.W.; Jiang, Y.H.; Ding, J.J.; Zhang, J.L. Low temperature cross-sensitivity humidity sensor based on a U-shaped microfiber interferometer. IEEE Sens. J. 2017, 17, 644–649. [Google Scholar] [CrossRef]
- Ni, K.; Chan, C.C.; Chen, L.H.; Dong, X.Y.; Huang, R.; Ma, Q.F. A chitosan-coated humidity sensor based on Mach-Zehnder interferometer with waist-enlarged fusion bitapers. Opt. Fiber Technol. 2017, 33, 56–59. [Google Scholar] [CrossRef]
- Bian, C.; Hu, M.L.; Wang, R.H.; Gang, T.T.; Tong, R.X.; Zhang, L.S.; Guo, T.; Liu, X.B.; Qiao, X.G. Optical fiber humidity sensor based on the direct response of the polyimide film. Appl. Opt. 2018, 57, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Gu, F.X.; Zhang, L.; Tong, L.M. Polymer microfiber rings for high-sensitivity optical humidity sensing. Appl. Opt. 2011, 50, G7–G10. [Google Scholar] [CrossRef] [PubMed]
- An, J.L.; Jin, Y.X.; Sun, M.M.; Dong, X.Y. Relative humidity sensor based on SMS fiber structure with two waist-enlarged tapers. IEEE Sens. J. 2014, 14, 2683–2686. [Google Scholar] [CrossRef]
- Peng, J.K.; Wang, W.J.; Qu, Y.P.; Sun, T.P.; Lv, D.J.; Dai, J.X.; Yang, M.H. Thin films based one-dimensional photonic crystal for humidity detection. Sens. Actuators A Phys. 2017, 263, 209–215. [Google Scholar] [CrossRef]
- Liu, H.F.; Miao, Y.P.; Liu, B.; Lin, W.; Zhang, H.; Song, B.B.; Huang, M.D.; Lin, L. Relative humidity sensor based on S-taper fiber coated with SiO2 nanoparticles. IEEE Sens. J. 2015, 15, 3424–3428. [Google Scholar] [CrossRef]
Reference | Configuration | Dynamic Range (%RH) | Wavelength Shift (nm) | Sensitivity (nm/%RH) |
---|---|---|---|---|
This paper | Polymer-coated LPFG | 25 (50–75) | 62.125 | 2.485 |
[6] | Cladding-etched optical fiber | 70 (20–90) | 133 | 1.9 |
[7] | Side-polished fiber | 12.6 (85–97.6) | 11.529 | 0.915 |
[11] | Fabry–Perot interference | 55 (30–85) | 207.9 | 3.78 |
[31] | Polymer optical fiber | 80 (10–90) | 0.5848 | 0.00731 |
[32] | U-shaped microfiber interferometer | 60 (30–90) | 6.882 | 0.1147 |
[33] | Mach–Zehnder interferometer | 80 (10–90) | 9.568 | 0.1196 |
[34] | Polyimide film-coated optical fiber | 40 (40–80) | 52.36 | 1.309 |
[35] | Polymer microfiber rings | 66 (5–71) | 32.43 | 0.49 |
[36] | singlemode-multimode-singlemode fiber structure | 50 (35–85) | 11.15 | 0.223 |
[37] | Thin film-based one-dimensional photonic crystal | 73 (11–84) | 21.9 | 0.3 |
[38] | SiO2 nanoparticle-coated S-taper fiber | 11.4 (83.8–95.2) | 13.36 | 1.1718 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, Y.; Zou, F.; Jiang, C.; Mou, C.; Wang, T. Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film. Sensors 2019, 19, 2263. https://doi.org/10.3390/s19102263
Wang Y, Liu Y, Zou F, Jiang C, Mou C, Wang T. Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film. Sensors. 2019; 19(10):2263. https://doi.org/10.3390/s19102263
Chicago/Turabian StyleWang, Yunlong, Yunqi Liu, Fang Zou, Chen Jiang, Chengbo Mou, and Tingyun Wang. 2019. "Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film" Sensors 19, no. 10: 2263. https://doi.org/10.3390/s19102263
APA StyleWang, Y., Liu, Y., Zou, F., Jiang, C., Mou, C., & Wang, T. (2019). Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film. Sensors, 19(10), 2263. https://doi.org/10.3390/s19102263