Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film
Abstract
1. Introduction
2. Principle and Sensor Fabrication
2.1. Principle and Experimental Setup
2.2. Sensor Fabrication
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alwis, L.; Sun, T.; Grattan, K.T.V. Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress. Measurement 2013, 46, 4052–4074. [Google Scholar] [CrossRef]
- Ascorve, J.; Corres, J.M.; Arregui, F.J.; Matias, I.R. Recent developments in fiber optics humidity sensors. Sensors 2017, 17, 893. [Google Scholar] [CrossRef]
- Ouyang, T.H.; Lin, L.M.; Xia, K.; Jiang, M.J.; Lang, Y.W.; Guan, H.Y.; Yu, J.H.; Li, D.Q.; Chen, G.L.; Zhu, W.G.; et al. Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing. Opt. Express 2017, 25, 9823–9833. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Shen, C.Y.; Lou, W.M.; Shentu, F.Y.; Zhong, C.A.; Dong, X.Y.; Tong, L.M. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide. Appl. Phys. Lett. 2016, 109, 031107. [Google Scholar]
- Irawati, N.; Rahman, H.A.; Yasin, M.; Al-Askari, S.; Hamida, B.A.; Ahmad, H.; Harun, S.W. Relative humidity sensing using a PMMA doped agarose gel microfiber. J. Lightw. Technol. 2017, 35, 3940–3944. [Google Scholar] [CrossRef]
- Ascorbe, J.; Corres, J.M.; Matias, I.R.; Arregui, F.J. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances. Sens. Actuators B Chem. 2016, 233, 7–16. [Google Scholar] [CrossRef]
- Huang, Y.M.; Zhu, W.G.; Li, Z.B.; Chen, G.L.; Chen, L.H.; Zhou, J.J.; Lin, H.; Guan, J.W.; Fang, W.X.; Liu, X.; et al. High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film. Sens. Actuators B Chem. 2018, 255, 57–69. [Google Scholar] [CrossRef]
- Liang, L.; Sun, H.; Liu, N.; Luo, H.; Gang, T.T.; Rong, Q.Z.; Qiao, X.G.; Hu, M.L. High-sensitivity optical fiber relative humidity probe with temperature calibration ability. Appl. Opt. 2018, 57, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.B.; Yin, M.J.; Zhang, A.P.; Qian, J.W.; He, S.L. Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer. Opt. Express 2011, 19, 4140–4146. [Google Scholar] [CrossRef]
- Woyessa, G.; Nielsen, K.; Stefani, A.; Markos, C.; Bang, O. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express 2016, 24, 1206–1213. [Google Scholar] [CrossRef]
- Liu, S.Q.; Ji, Y.K.; Yang, J.; Sun, W.M.; Li, H.Y. Nafion film temperature/humidity sensing based on optical fiber Fabry-Perot interference. Sens. Actuators A Phys. 2018, 269, 313–321. [Google Scholar] [CrossRef]
- Alwis, L.; Sun, T.; Grattan, K.T.V. Fibre optic long period grating-based humidity sensor probe using a Michelson interferometric arrangement. Sens. Actuators B Chem. 2013, 178, 694–699. [Google Scholar] [CrossRef]
- Urrutia, A.; Goicoechea, J.; Ricchiuti, A.L.; Barrera, D.; Sales, S.; Arregui, F.J. Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating. Sens. Actuators B Chem. 2016, 227, 135–141. [Google Scholar] [CrossRef]
- Wang, C.L.; Yan, G.F.; Lian, Z.G.; Chen, X.; Wu, S.N.; He, S.L. Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing. Sens. Actuators B Chem. 2018, 255, 1937–1944. [Google Scholar] [CrossRef]
- Thomas, P.J.; Hellevang, J.O. A fully distributed fibre optic sensor for relative humidity measurements. Sens. Actuators B Chem. 2017, 247, 284–289. [Google Scholar] [CrossRef]
- Wang, H.; Feng, C.D.; Sun, S.L.; Segre, C.U.; Stetter, J.R. Comparison of conductometric humidity-sensing polymers. Sens. Actuators B Chem. 2016, 40, 211–216. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Zhou, C.; Guo, Q.; Wang, T. Sensing characteristics of long-period fiber gratings written in thinned cladding fiber. IEEE Sens. J. 2016, 16, 1217–1223. [Google Scholar] [CrossRef]
- Zou, F.; Liu, Y.; Zhu, S.; Deng, C.; Dong, Y.; Wang, T. Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings. IEEE Sens. J. 2016, 16, 2460–2465. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, H.W.; Chiang, K.S.; Zhu, T.; Rao, Y.J. Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers. J. Lightw. Technol. 2009, 27, 857–863. [Google Scholar] [CrossRef]
- James, S.W.; Tatam, R.P. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 2003, 14, R49. [Google Scholar] [CrossRef]
- Zou, F.; Liu, Y.; Deng, C.; Dong, Y.; Zhu, S.; Wang, T. Refractive index sensitivity of nano-film coated long-period fiber gratings. Opt. Express 2015, 23, 1114–1124. [Google Scholar] [CrossRef]
- Yan, G.F.; Liang, Y.H.; Lee, E.H.; He, S.L. Novel Knob-integrated fiber Bragg grating sensor with polyvinyl alcohol coating for simultaneous relative humidity and temperature measurement. Opt. Express 2015, 23, 15624–15634. [Google Scholar] [CrossRef]
- Dong, X.Y.; Li, T.; Liu, Y.; Li, Y.; Zhao, C.L.; Chan, C.C. Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing. J. Biomed. Opt. 2011, 16, 077001. [Google Scholar] [CrossRef]
- Miao, Y.P.; Liu, B.; Zhang, H.; Li, Y.; Zhou, H.B.; Sun, H.; Zhang, W.H.; Zhao, Q.D. Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating. IEEE Photonics Technol. Lett. 2009, 21, 441–443. [Google Scholar] [CrossRef]
- Villar, I.D.; Matias, I.R.; Arregui, F.J. Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials. Opt. Lett. 2005, 30, 2363–2365. [Google Scholar] [CrossRef]
- Ma, Q.F.; Tou, Z.Q.; Ni, K.; Lim, Y.Y.; Lin, Y.F.; Wang, Y.R.; Zhou, M.H.; Shi, F.F.; Niu, L.; Dong, X.Y.; et al. Carbon-nanotube/Polyvinyl alcohol coated thin core fiber sensor for humidity measurement. Sens. Actuators B Chem. 2018, 257, 800–806. [Google Scholar] [CrossRef]
- Venugopalan, T.; Yeo, T.L.; Sun, T.; Grattan, K.T.V. LPG-based PVA coated sensor for relative humidity measurement. IEEE Sens. J. 2008, 8, 1093–1098. [Google Scholar] [CrossRef]
- Koyamada, Y. Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings. IEEE Photonics Technol. Lett. 2001, 13, 308–310. [Google Scholar] [CrossRef]
- Patrick, H.J.; Kersey, A.D.; Bucholtz, F. Analysis of the response of long period fiber gratings to external index of refraction. J. Lightw. Technol. 1998, 16, 1606. [Google Scholar] [CrossRef]
- Shu, X.W.; Zhang, L.; Bennion, I. Sensitivity characteristics of long-period fiber gratings. J. Lightw. Technol. 2002, 20, 255–266. [Google Scholar]
- Woyessa, G.; Fasano, A.; Markos, C.; Rasmussen, H.K.; Bang, O. Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing. IEEE Photonic. Technol. Lett. 2017, 29, 575–578. [Google Scholar] [CrossRef]
- Fu, H.W.; Jiang, Y.H.; Ding, J.J.; Zhang, J.L. Low temperature cross-sensitivity humidity sensor based on a U-shaped microfiber interferometer. IEEE Sens. J. 2017, 17, 644–649. [Google Scholar] [CrossRef]
- Ni, K.; Chan, C.C.; Chen, L.H.; Dong, X.Y.; Huang, R.; Ma, Q.F. A chitosan-coated humidity sensor based on Mach-Zehnder interferometer with waist-enlarged fusion bitapers. Opt. Fiber Technol. 2017, 33, 56–59. [Google Scholar] [CrossRef]
- Bian, C.; Hu, M.L.; Wang, R.H.; Gang, T.T.; Tong, R.X.; Zhang, L.S.; Guo, T.; Liu, X.B.; Qiao, X.G. Optical fiber humidity sensor based on the direct response of the polyimide film. Appl. Opt. 2018, 57, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Gu, F.X.; Zhang, L.; Tong, L.M. Polymer microfiber rings for high-sensitivity optical humidity sensing. Appl. Opt. 2011, 50, G7–G10. [Google Scholar] [CrossRef] [PubMed]
- An, J.L.; Jin, Y.X.; Sun, M.M.; Dong, X.Y. Relative humidity sensor based on SMS fiber structure with two waist-enlarged tapers. IEEE Sens. J. 2014, 14, 2683–2686. [Google Scholar] [CrossRef]
- Peng, J.K.; Wang, W.J.; Qu, Y.P.; Sun, T.P.; Lv, D.J.; Dai, J.X.; Yang, M.H. Thin films based one-dimensional photonic crystal for humidity detection. Sens. Actuators A Phys. 2017, 263, 209–215. [Google Scholar] [CrossRef]
- Liu, H.F.; Miao, Y.P.; Liu, B.; Lin, W.; Zhang, H.; Song, B.B.; Huang, M.D.; Lin, L. Relative humidity sensor based on S-taper fiber coated with SiO2 nanoparticles. IEEE Sens. J. 2015, 15, 3424–3428. [Google Scholar] [CrossRef]
Reference | Configuration | Dynamic Range (%RH) | Wavelength Shift (nm) | Sensitivity (nm/%RH) |
---|---|---|---|---|
This paper | Polymer-coated LPFG | 25 (50–75) | 62.125 | 2.485 |
[6] | Cladding-etched optical fiber | 70 (20–90) | 133 | 1.9 |
[7] | Side-polished fiber | 12.6 (85–97.6) | 11.529 | 0.915 |
[11] | Fabry–Perot interference | 55 (30–85) | 207.9 | 3.78 |
[31] | Polymer optical fiber | 80 (10–90) | 0.5848 | 0.00731 |
[32] | U-shaped microfiber interferometer | 60 (30–90) | 6.882 | 0.1147 |
[33] | Mach–Zehnder interferometer | 80 (10–90) | 9.568 | 0.1196 |
[34] | Polyimide film-coated optical fiber | 40 (40–80) | 52.36 | 1.309 |
[35] | Polymer microfiber rings | 66 (5–71) | 32.43 | 0.49 |
[36] | singlemode-multimode-singlemode fiber structure | 50 (35–85) | 11.15 | 0.223 |
[37] | Thin film-based one-dimensional photonic crystal | 73 (11–84) | 21.9 | 0.3 |
[38] | SiO2 nanoparticle-coated S-taper fiber | 11.4 (83.8–95.2) | 13.36 | 1.1718 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, Y.; Zou, F.; Jiang, C.; Mou, C.; Wang, T. Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film. Sensors 2019, 19, 2263. https://doi.org/10.3390/s19102263
Wang Y, Liu Y, Zou F, Jiang C, Mou C, Wang T. Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film. Sensors. 2019; 19(10):2263. https://doi.org/10.3390/s19102263
Chicago/Turabian StyleWang, Yunlong, Yunqi Liu, Fang Zou, Chen Jiang, Chengbo Mou, and Tingyun Wang. 2019. "Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film" Sensors 19, no. 10: 2263. https://doi.org/10.3390/s19102263
APA StyleWang, Y., Liu, Y., Zou, F., Jiang, C., Mou, C., & Wang, T. (2019). Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film. Sensors, 19(10), 2263. https://doi.org/10.3390/s19102263