Motion Artifact Correction of Multi-Measured Functional Near-Infrared Spectroscopy Signals Based on Signal Reconstruction Using an Artificial Neural Network †
Abstract
:1. Introduction
2. Methods
2.1. fNIRS Data Acquisition
2.2. Contaminated Channel Identification Algoriothm Based on Entropy
2.3. Motion Artifact Correction Using BPNN
3. Ex. Perimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Villringer, A.; Dirnagl, U. Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging. Cerebrovasc. Brain Metab. Rev. 1995, 7, 240–276. [Google Scholar] [PubMed]
- Xiao, S.; He, Y.; Dong, T.; Nie, P. Spectral Analysis and Sensitive Waveband Determination Based on Nitrogen Detection of Different Soil Types Using Near Infrared Sensors. Sensors 2018, 18, 523. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Huang, S.; Wang, N.; Jin, Z.; Zhang, J.; Chen, W. A near-infrared spectrometer based on novel grating light modulators. Sensors 2009, 9, 3109–3121. [Google Scholar] [CrossRef] [PubMed]
- Fekete, T.; Rubin, D.; Carlson, J.M.; Mujica-Parodi, L.R. The NIRS analysis package: Noise reduction and statistical inference. PLoS ONE 2011, 6, e24322. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Fletcher, P.; Josephs, O.; Holmes, A.; Rugg, M.; Turner, R. Event-related fMRI: Characterizing differential responses. NeuroImage 1998, 7, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.C.; Tak, S.; Jang, K.E.; Jung, J.; Jang, J. NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. NeuroImage 2009, 44, 428–447. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, M.L.; Bücheler, M.M.; Müller, K.; Uludağ, K.; Obrig, H.; Lohmann, G.; Tittgemeyer, M.; Villringer, A.; von Cramon, D.Y. Towards a standard analysis for functional near-infrared imaging. NeuroImage 2004, 21, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plichta, M.; Heinzel, S.; Ehlis, A.-C.; Pauli, P.; Fallgatter, A. Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: A parametric validation study. NeuroImage 2007, 35, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Koh, P.H.; Glaser, D.E.; Flandin, G.; Kiebel, S.; Butterworth, B.; Maki, A.; Delpy, D.T.; Elwell, C.E. Functional optical signal analysis: A software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping. J. Biomed. Opt. 2007, 12, 064010. [Google Scholar] [CrossRef] [PubMed]
- Worsley, K.J.; Friston, K.J. Analysis of fMRI time-series revisited—Again. NeuroImage 1995, 2, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.E.; Tak, S.; Jung, J.; Jang, J.; Jeong, Y.; Ye, J.C. Wavelet minimum description length detrending for near-infrared spectroscopy. J. Biomed. Opt. 2009, 14, 034004. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Ji, Y.; Li, Y.; Li, T. Online Removal of Baseline Shift with a Polynomial Function for Hemodynamic Monitoring Using Near-Infrared Spectroscopy. Sensors 2018, 18, 312. [Google Scholar] [CrossRef] [PubMed]
- Izzetoglu, M.; Devaraj, A.; Bunce, S.; Onaral, B. Motion artifact cancellation in NIR spectroscopy using Wiener filtering. IEEE Trans. Biomed. Eng. 2005, 52, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Bray, S.; Reiss, A.L. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage 2010, 49, 3039–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Strangman, G.E.; Ganis, G. Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: How well and when does it work? Neuroimage 2009, 45, 788–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagnon, L.; Cooper, R.J.; Yücel, M.A.; Perdue, K.L.; Greve, D.N.; Boas, D.A. Short separation channel location impacts the performance of short channel regression in NIRS. NeuroImage 2012, 59, 2518–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagnon, L.; Yücel, M.A.; Boas, D.A.; Cooper, R.J. Further improvement in reducing superficial contamination in NIRS using double short separation measurements. NeuroImage 2014, 85, 127–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, N.; Natarajan, T.; Rao, K.R. Discrete cosine transform. IEEE Trans. Comput. 1974, 100, 90–93. [Google Scholar] [CrossRef]
- Friston, K.; Josephs, O.; Zarahn, E.; Holmes, A.; Rouquette, S.; Poline, J.-B. To smooth or not to smooth?: Bias and efficiency in fmri time-series analysis. NeuroImage 2000, 12, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Abibullaev, B.; An, J. Classification of frontal cortex haemodynamic responses during cognitive tasks using wavelet transforms and machine learning algorithms. Med. Eng. Phys. 2012, 34, 1394–1410. [Google Scholar] [CrossRef] [PubMed]
- Molavi, B.; Dumont, G.A. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol. Meas. 2012, 33, 259. [Google Scholar] [CrossRef] [PubMed]
- Gautam, M.K.; Giri, V.K. A Neural Network approach and Wavelet analysis for ECG classification. In Proceedings of the 2016 IEEE International Conference on Engineering and Technology (ICETECH), Coimbatore, India, 17–18 March 2016; pp. 1136–1141. [Google Scholar]
- Cigizoglu, H.K. Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv. Water Resour. 2004, 27, 185–195. [Google Scholar] [CrossRef]
- Abdelnour, A.F.; Huppert, T. Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model. NeuroImage 2009, 46, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cope, M.; Delpy, D.T. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med. Biol. Eng. Comput. 1988, 26, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Jezzard, P.; Turner, R. Analysis of functional MRI time-series. Hum. Brain Mapp. 1994, 1, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Penny, W.D.; Friston, K.J.; Ashburner, J.T.; Kiebel, S.J.; Nichols, T.E. Statistical Parametric Mapping: The Analysis of Functional Brain Images; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Lee, G.; Jin, S.H.; Lee, S.H.; Abibullaev, B.; An, J. fNIRS motion artifact correction for overground walking using entropy based unbalanced optode decision and wavelet regression neural network. In Proceedings of the 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) 2017, Daegu, Korea, 16–18 November 2017; pp. 186–193. [Google Scholar]
- Shannon, C.E. A note on the concept of entropy. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Nair, U.; Krishna, B.M.; Namboothiri, V.; Nampoori, V. Permutation entropy based real-time chatter detection using audio signal in turning process. Int. J. Adv. Manuf. Technol. 2010, 46, 61–68. [Google Scholar] [CrossRef]
- Boashash, B. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Lee, G.; Na, S.D.; Cho, J.-H.; Kim, M.N. Voice activity detection algorithm using perceptual wavelet entropy neighbor slope. Bio-Med. Mater. Eng. 2014, 24, 3295–3301. [Google Scholar]
- Lee, G.; Dae Na, S.; Seong, K.; Cho, J.-H.; Nam Kim, M. Wavelet speech enhancement algorithm using exponential semi-soft mask filtering. Bioengineered 2016, 7, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Na, S.D.; Seong, K.; Cho, J.-H.; Kim, M.N. Speech Enhancement Algorithm using Recursive Wavelet Shrinkage. Inst. Electron. Inf. Commun. Eng. 2016, 99, 1945–1948. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv, 2014; arXiv:1412.6980. [Google Scholar]
- Miyai, I.; Tanabe, H.C.; Sase, I.; Eda, H.; Oda, I.; Konishi, I.; Tsunazawa, Y.; Suzuki, T.; Yanagida, T.; Kubota, K. Cortical mapping of gait in humans: A near-infrared spectroscopic topography study. NeuroImage 2001, 14, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Seeber, M.; Scherer, R.; Wagner, J.; Solis-Escalante, T.; Müller-Putz, G.R. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front. Hum. Neurosci. 2014, 8, 485. [Google Scholar] [CrossRef] [PubMed]
- Miyai, I.; Suzuki, M.; Hatakenaka, M.; Kubota, K. Effect of body weight support on cortical activation during gait in patients with stroke. Exp. Brain Res. 2006, 169, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Enzinger, C.; Johansen-Berg, H.; Dawes, H.; Bogdanovic, M.; Collett, J.; Guy, C.; Ropele, S.; Kischka, U.; Wade, D.; Fazekas, F. Functional MRI correlates of lower limb function in stroke victims with gait impairment. Stroke 2008, 39, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Brooks, D.H.; Franceschini, M.A.; Boas, D.A. Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging. J. Biomed. Opt. 2005, 10, 011014–01101411. [Google Scholar] [CrossRef] [PubMed]
- Huettel, S.A.; McCarthy, G. Evidence for a refractory period in the hemodynamic response to visual stimuli as measured by MRI. NeuroImage 2000, 11, 547–553. [Google Scholar] [CrossRef] [PubMed]
- MATLAB. Available online: https://kr.mathworks.com/products/matlab.html (accessed on 5 September 2018).
- Antoniadis, A.; Oppenheim, G. Wavelets and Statistics; Springer Science & Business Media: Berlin, Germany, 2012; Volume 103. [Google Scholar]
- Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L.; Johnstone, I.M.; Kerkyacharian, G.; Picard, D. Wavelet shrinkage: Asymptopia? J. R. Stat. Soc. Ser. B (Methodol.) 1995, 301–369. [Google Scholar]
Raw Data | HRF Smoothing | Wavelet Denoising | Wavelet MDL | Proposed Method | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OG | TM | OG | TM | OG | TM | OG | TM | OG | TM | ||
Stroke patient subjects | S1 | 0.30 | 0.29 | 0.64 | 0.62 | 0.47 | 0.44 | 0.67 | 0.27 | 0.82 | 0.64 |
S2 | 0.50 | 0.71 | 0.80 | 1.11 | 0.70 | 1.03 | 1.06 | 1.03 | 0.82 | 1.18 | |
Healthy subjects | S3 | 0.85 | 1.06 | 1.19 | 1.58 | 0.97 | 1.27 | 0.53 | 1.28 | 1.25 | 1.62 |
S4 | 0.05 | 0.18 | 0.18 | 0.35 | 0.01 | 0.12 | 0.06 | 0.17 | 0.22 | 0.36 | |
S5 | 0.20 | 0.25 | 0.38 | 0.51 | 0.34 | 0.80 | 0.09 | 0.39 | 0.42 | 0.54 | |
S6 | 1.04 | 1.00 | 1.46 | 1.52 | 1.14 | 1.22 | 1.43 | 1.18 | 1.52 | 1.51 |
HRF Smoothing | Wavelet Denoising | Wavelet MDL | Proposed Method | |
---|---|---|---|---|
Corrected channels | 0.49 | 0.36 | −0.12 | 0.63 |
ROI channels | 0.74 | 0.64 | 0.09 | 0.73 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.; Jin, S.H.; An, J. Motion Artifact Correction of Multi-Measured Functional Near-Infrared Spectroscopy Signals Based on Signal Reconstruction Using an Artificial Neural Network. Sensors 2018, 18, 2957. https://doi.org/10.3390/s18092957
Lee G, Jin SH, An J. Motion Artifact Correction of Multi-Measured Functional Near-Infrared Spectroscopy Signals Based on Signal Reconstruction Using an Artificial Neural Network. Sensors. 2018; 18(9):2957. https://doi.org/10.3390/s18092957
Chicago/Turabian StyleLee, Gihyoun, Sang Hyeon Jin, and Jinung An. 2018. "Motion Artifact Correction of Multi-Measured Functional Near-Infrared Spectroscopy Signals Based on Signal Reconstruction Using an Artificial Neural Network" Sensors 18, no. 9: 2957. https://doi.org/10.3390/s18092957
APA StyleLee, G., Jin, S. H., & An, J. (2018). Motion Artifact Correction of Multi-Measured Functional Near-Infrared Spectroscopy Signals Based on Signal Reconstruction Using an Artificial Neural Network. Sensors, 18(9), 2957. https://doi.org/10.3390/s18092957