Next Article in Journal
Star Centroiding Based on Fast Gaussian Fitting for Star Sensors
Next Article in Special Issue
Design and Implementation of a Stereo Vision System on an Innovative 6DOF Single-Edge Machining Device for Tool Tip Localization and Path Correction
Previous Article in Journal
Capturing Electrocardiogram Signals from Chairs by Multiple Capacitively Coupled Unipolar Electrodes
Previous Article in Special Issue
Superpixel Segmentation Based Synthetic Classifications with Clear Boundary Information for a Legged Robot
Open AccessArticle

Hand Tracking and Gesture Recognition Using Lensless Smart Sensors

Micro and Nano Systems Centre of Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
Author to whom correspondence should be addressed.
Sensors 2018, 18(9), 2834;
Received: 7 June 2018 / Revised: 15 August 2018 / Accepted: 18 August 2018 / Published: 28 August 2018
The Lensless Smart Sensor (LSS) developed by Rambus, Inc. is a low-power, low-cost visual sensing technology that captures information-rich optical data in a tiny form factor using a novel approach to optical sensing. The spiral gratings of LSS diffractive grating, coupled with sophisticated computational algorithms, allow point tracking down to millimeter-level accuracy. This work is focused on developing novel algorithms for the detection of multiple points and thereby enabling hand tracking and gesture recognition using the LSS. The algorithms are formulated based on geometrical and mathematical constraints around the placement of infrared light-emitting diodes (LEDs) on the hand. The developed techniques dynamically adapt the recognition and orientation of the hand and associated gestures. A detailed accuracy analysis for both hand tracking and gesture classification as a function of LED positions is conducted to validate the performance of the system. Our results indicate that the technology is a promising approach, as the current state-of-the-art focuses on human motion tracking that requires highly complex and expensive systems. A wearable, low-power, low-cost system could make a significant impact in this field, as it does not require complex hardware or additional sensors on the tracked segments. View Full-Text
Keywords: LSS; Infrared LEDs; Calibration; Tracking; gestures; RMSE; Repeatability; Temporal Noise; latency LSS; Infrared LEDs; Calibration; Tracking; gestures; RMSE; Repeatability; Temporal Noise; latency
Show Figures

Figure 1

MDPI and ACS Style

Abraham, L.; Urru, A.; Normani, N.; Wilk, M.P.; Walsh, M.; O’Flynn, B. Hand Tracking and Gesture Recognition Using Lensless Smart Sensors. Sensors 2018, 18, 2834.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop