Mapping Forest Structure Using UAS inside Flight Capabilities
Abstract
:1. Introduction
2. Research Area
3. Materials and Methods
3.1. Field Survey
3.2. Image Acquisition
3.3. Data Processing
3.4. Accuracy Assessment
4. Results
4.1. Imagery and Point Clouds
4.2. Diameter Estimation
4.3. Spatial Distribution and Predictors of Error
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing Nature’s Contributions to People. Science 2018, 359, 270–272. [Google Scholar] [CrossRef] [PubMed]
- Mikita, T.; Janata, P.; Surový, P. Forest Stand Inventory Based on Combined Aerial and Terrestrial Close-Range Photogrammetry. Forests 2016, 7, 165. [Google Scholar] [CrossRef]
- Brede, B.; Lau, A.; Bartholomeus, H.M.; Kooistra, L. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR. Sensors 2017, 17, 2371. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial Laser Scanning in Forest Inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Tomaštík, J.; Saloň, Š.; Tunák, D.; Chudý, F.; Kardoš, M. Tango in Forests—An Initial Experience of the Use of the New Google Technology in Connection with Forest Inventory Tasks. Comput. Electron. Agric. 2017, 141, 109–117. [Google Scholar] [CrossRef]
- Koreň, M.; Mokroš, M.; Bucha, T. Accuracy of Tree Diameter Estimation from Terrestrial Laser Scanning by Circle-Fitting Methods. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 122–128. [Google Scholar] [CrossRef]
- Wieser, M.; Mandlburger, G.; Hollaus, M.; Otepka, J.; Glira, P.; Pfeifer, N. A Case Study of UAS Borne Laser Scanning for Measurement of Tree Stem Diameter. Remote Sens. 2017, 9, 1154. [Google Scholar] [CrossRef]
- Dassot, M.; Constant, T.; Fournier, M. The Use of Terrestrial LiDAR Technology in Forest Science: Application Fields, Benefits and Challenges. Ann. For. Sci. 2011, 68, 959–974. [Google Scholar] [CrossRef]
- Liang, X.; Litkey, P.; Hyyppä, J.; Kaartinen, H.; Kukko, A.; Holopainen, M. Automatic Plot-Wise Tree Location Mapping Using Single-Scan Terrestrial Laser Scanning. Photogramm. J. Finl. 2011, 22, 37–48. [Google Scholar]
- Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; et al. Nondestructive Estimates of above-Ground Biomass Using Terrestrial Laser Scanning. Methods Ecol. Evol. 2015, 6, 198–208. [Google Scholar] [CrossRef]
- Srinivasan, S.; Popescu, S.C.; Eriksson, M.; Sheridan, R.D.; Ku, N.W. Multi-Temporal Terrestrial Laser Scanning for Modeling Tree Biomass Change. For. Ecol. Manag. 2014, 318, 304–317. [Google Scholar] [CrossRef]
- Newnham, G.J.; Armston, J.D.; Calders, K.; Disney, M.I.; Lovell, J.L.; Schaaf, C.B.; Strahler, A.H.; Danson, F.M. Terrestrial Laser Scanning for Plot-Scale Forest Measurement. Curr. For. Rep. 2016, 2, 214. [Google Scholar] [CrossRef]
- Pierzchała, M.; Giguère, P.; Astrup, R. Mapping Forests Using an Unmanned Ground Vehicle with 3D LiDAR and Graph-SLAM. Comput. Electron. Agric. 2018, 145, 217–225. [Google Scholar] [CrossRef]
- Lowe, D.G. Method and Apparatus for Identifying Scale Invariant Features in an Image and Use of Same for Locating an Object in an Image. U.S. Patent No. 6,711,293, 23 March 2004. [Google Scholar]
- Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded up Robust Features. Lect. Notes Comput. Sci. 2006, 3951, 404–417. [Google Scholar] [CrossRef]
- Rosnell, T.; Honkavaara, E. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera. Sensors 2012, 12, 453–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surový, P.; Yoshimoto, A.; Panagiotidis, D. Accuracy of Reconstruction of the Tree Stem Surface Using Terrestrial Close-Range Photogrammetry. Remote Sens. 2016, 8, 123. [Google Scholar] [CrossRef]
- Thiel, C.; Schmullius, C. Comparison of UAV Photograph-Based and Airborne Lidar-Based Point Clouds over Forest from a Forestry Application Perspective. Int. J. Remote Sens. 2016, 38, 2411–2426. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Malenovský, Z.; Turner, D.; Vopěnka, P. Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests 2016, 7, 62. [Google Scholar] [CrossRef]
- Miller, J.; Morgenroth, J.; Gomez, C. 3D Modelling of Individual Trees Using a Handheld Camera: Accuracy of Height, Diameter and Volume Estimates. Urban For. Urban Green. 2015, 14, 932–940. [Google Scholar] [CrossRef]
- Dandois, J.P.; Ellis, E.C. Remote Sensing of Vegetation Structure Using Computer Vision. Remote Sens. 2010, 2, 1157–1176. [Google Scholar] [CrossRef] [Green Version]
- Lucieer, A.; Robinson, S.; Turner, D. Unmanned Aerial Vehicle (UAV) Remote Sensing for Hyperspatial Terrain Mapping of Antarctic Moss Beds Based on Structure from Motion (SfM) Point Clouds. In Proceedings of the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–15 April 2011. [Google Scholar]
- Liang, X.; Jaakkola, A.; Wang, Y.; Hyyppä, J.; Honkavaara, E.; Liu, J.; Kaartinen, H. The Use of a Hand-Held Camera for Individual Tree 3D Mapping in Forest Sample Plots. Remote Sens. 2014, 6, 6587–6603. [Google Scholar] [CrossRef] [Green Version]
- Ota, T.; Ogawa, M.; Shimizu, K.; Kajisa, T.; Mizoue, N.; Yoshida, S.; Takao, G.; Hirata, Y.; Furuya, N.; Sano, T.; et al. Aboveground Biomass Estimation Using Structure from Motion Approach with Aerial Photographs in a Seasonal Tropical Forest. Forests 2015, 6, 3882–3898. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.C.; Slyder, J.B. Individual Tree Segmentation from a Leaf-off Photogrammetric Point Cloud. Int. J. Remote Sens. 2018, 1–16. [Google Scholar] [CrossRef]
- Mokroš, M.; Liang, X.; Surový, P.; Valent, P.; Čerňava, J.; Chudý, F.; Tunák, D.; Saloň, Š.; Merganič, J. Evaluation of Close-Range Photogrammetry Image Collection Methods for Estimating Tree Diameters. ISPRS Int. J. Geo Inf. 2018, 7, 93. [Google Scholar] [CrossRef]
- Puliti, S.; Ørka, H.; Gobakken, T.; Næsset, E. Inventory of Small Forest Areas Using an Unmanned Aerial System. Remote Sens. 2015, 7, 9632–9654. [Google Scholar] [CrossRef] [Green Version]
- Agisoft PhotoScan. Available online: http://www.agisoft.com/ (accessed on 2 May 2018).
- MATLAB. Available online: https://www.mathworks.com/products/matlab.html (accessed on 2 May 2018).
- Fitzgibbon, A.; Pilu, M.; Fisher, R.B. Direct Least Square Fitting of Ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 476–480. [Google Scholar] [CrossRef]
- Koskela, L.; Nummi, T.; Wenzel, S.; Kivinen, V.P. On the Analysis of Cubic Smoothing Spline-Based Stem Curve Prediction for Forest Harvesters. Can. J. For. Res. 2006, 36, 2909–2919. [Google Scholar] [CrossRef]
- Nummi, T.; Mottonen, J. Prediction of Stem Measurements of Scots Pine. J. Appl. Stat. 2004, 31, 105–114. [Google Scholar] [CrossRef]
- Forsman, M.; Börlin, N.; Holmgren, J. Estimation of Tree Stem Attributes Using Terrestrial Photogrammetry with a Camera Rig. Forests 2016, 7, 61. [Google Scholar] [CrossRef]
- Forsman, M.; Holmgren, J.; Olofsson, K. Tree Stem Diameter Estimation from Mobile Laser Scanning Using Line-Wise Intensity-Based Clustering. Forests 2016, 7, 206. [Google Scholar] [CrossRef]
- Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests 2016, 7, 127. [Google Scholar] [CrossRef]
- Simonse, M.; Aschoff, T.; Spiecker, H.; Thies, M. Automatic Determination of Forest Inventory Parameters Using Terrestrial Laserscanning. In Proceedings of the Scandlaser Scientific Workshop on Airborne Laser Scanning Of Forests, Umea, Sweden, 3—4 September 2003; pp. 252–258. [Google Scholar]
- Bienert, A.; Scheller, S.; Keane, E.; Mullooly, G.; Mohan, F. Application of Terrestrial Laser Scanners for the Determination of Forest Inventory Parameters. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 5. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppä, J. Automatic Stem Mapping by Merging Several Terrestrial Laser Scans at the Feature and Decision Levels. Sensors 2013, 13, 1614–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Research Plot | Spruce | Beech |
---|---|---|
Species composition percentages (# trees) | 97% Norway spruce (67) 3% European beech (1) | 100% European beech (55) |
Age (years) | 102 | 110 |
Mean diameter (cm) | 43.7 | 41.8 |
Mean height (m) | 33.4 | 31.2 |
Crown base height (m) | 14 | 12 |
Stocking | 90% | 100% |
Tree density (trees/ha) | 290 | 270 |
Volume (m3/ha) | 560 | 540 |
Sensor | DJI Phantom 4 Pro | DJI Mavic Pro |
---|---|---|
Sensor size | 1 inch | 1/2.3 inch |
Sensor resolution | 20 MPix | 12 MPix |
Max. ISO | 12,800 | 3200 |
Aperture | f/2.8–f/11 | f/2.2 fixed |
Shutter | Mechanical | Electronic |
Research Plot | UAS | Imgs. Captured | Imgs. Aligned | Tie Points | Points |
---|---|---|---|---|---|
Spruce | Phantom 4 Pro | 1099 | 895 (81%) | 327 thous. | 29 mil. |
Mavic Pro | 461 | 416 (90%) | 998 thous. | 10 mil. | |
Beech | Phantom 4 Pro | 581 | 531 (91%) | 502 thous. | 22 mil. |
Mavic Pro | 767 | 697 (91%) | 185 thous. | 17 mil. |
Phantom 4 Pro | Mavic Pro | |||||||
---|---|---|---|---|---|---|---|---|
Bias (cm) | Bias (%) | RMSE (cm) | RMSE (%) | Bias (cm) | Bias (%) | RMSE (cm) | RMSE (%) | |
CB | 1.55 * | 2.89 | 4.34 | 9.66 | 11.29 * | 27.76 | 20.39 | 54.48 |
CH | −3.77 * | −9.09 | 5.31 | 13.3 | −2.18 | −3.76 | 11.79 | 30.91 |
C | −4.19 * | −10.11 | 4.87 | 12.41 | −1.98 | −3.19 | 9.67 | 23.79 |
E | −1.17 * | −3.14 | 3.21 | 8.18 | 5.47 | 14.57 | 18.66 | 49.89 |
CB | 3.04 * | 7.84 | 4.5 | 11.95 | 8.84 * | 22.44 | 11.92 | 31.96 |
CH | −2.64 * | −6.26 | 4.1 | 9.95 | 0.06 | 0.2 | 5.46 | 13.82 |
C | −3.37 * | −8.31 | 3.63 | 9.18 | −0.4 | −0.97 | 5.48 | 15.92 |
E | 0.27 | 0.69 | 2.63 | 7.01 | 6.16 * | 15.69 | 9.71 | 26.48 |
Method | DBH Error (cm) (RMSE if not Mentioned Otherwise) | Study |
---|---|---|
TP | 0.9–1.19 | [2] |
2.8–9.5 | [33] | |
4.41–5.98 | [26] | |
TLS | 3.2–4.2 | [34] |
1.11–3.73 | [35] | |
1.7 ± 2.8 (mean ± SD) | [36] | |
−0.96–0.93 ± 1.23–2.47 (mean ± SD) | [37] | |
0.90–1.90 | [38] | |
0.7–7.0 | [4] | |
ALS | 0.8–4.7 (median) | [7] |
4.24 | [3] | |
Our approach | 2.63–3.21 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuželka, K.; Surový, P. Mapping Forest Structure Using UAS inside Flight Capabilities. Sensors 2018, 18, 2245. https://doi.org/10.3390/s18072245
Kuželka K, Surový P. Mapping Forest Structure Using UAS inside Flight Capabilities. Sensors. 2018; 18(7):2245. https://doi.org/10.3390/s18072245
Chicago/Turabian StyleKuželka, Karel, and Peter Surový. 2018. "Mapping Forest Structure Using UAS inside Flight Capabilities" Sensors 18, no. 7: 2245. https://doi.org/10.3390/s18072245
APA StyleKuželka, K., & Surový, P. (2018). Mapping Forest Structure Using UAS inside Flight Capabilities. Sensors, 18(7), 2245. https://doi.org/10.3390/s18072245