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Abstract: We investigated the capabilities of a canopy height model (CHM) derived from 

aerial photographs using the Structure from Motion (SfM) approach to estimate 

aboveground biomass (AGB) in a tropical forest. Aerial photographs and airborne Light 

Detection and Ranging (LiDAR) data were simultaneously acquired under leaf-on canopy 

conditions. A 3D point cloud was generated from aerial photographs using the SfM 

approach and converted to a digital surface model (DSMP). We also created a DSM from 

airborne LiDAR data (DSML). From each of DSMP and DSML, we constructed digital 

terrain models (DTM), which are DTMP and DTML, respectively. We created four CHMs, 

which were calculated from (1) DSMP and DTMP (CHMPP); (2) DSMP and DTML 

(CHMPL); (3) DSML and DTMP (CHMLP); and (4) DSML and DTML (CHMLL). Then, we 

estimated AGB using these CHMs. The model using CHMLL yielded the highest accuracy 

in four CHMs (R2 = 0.94) and was comparable to the model using CHMPL (R2 = 0.93). The 

model using CHMPP yielded the lowest accuracy (R2 = 0.79). In conclusion, AGB can be 

estimated from CHM derived from aerial photographs using the SfM approach in the 

tropics. However, to accurately estimate AGB, we need a more accurate DTM than the 

DTM derived from aerial photographs using the SfM approach. 

Keywords: aboveground biomass; aerial photograph; Airborne LiDAR; seasonal tropical 

forest; SfM 

 

1. Introduction 

Tropical forests have been recognized as an important type of ecosystem that can be used in 

mitigating climate change, because they sequester and store more carbon than any other vegetation 

types [1,2]. However, tropical forests are being deforested and degraded dramatically through 

agricultural expansion, wood extraction, infrastructure development, and other natural and 

anthropogenic processes [3,4]. As a result, carbon emissions from deforestation and forest degradation 

in tropical forests are a major issue in the global carbon budget [5–8]. Reducing emissions from 

deforestation and forest degradation, and the role of conservation, sustainable management of forests 

and enhancement of forest carbon stocks in developing countries (REDD+) is one mitigation 

mechanism related to deforestation and forest degradation in tropical forests. For the implementation 

of REDD+, a scientifically robust method is required to quantify aboveground biomass (AGB) [9]. 
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Remote sensing with ground-based inventories is expected to play an important role as the method that 

can be used to quantify AGB for the implementation of REDD+. 

Airborne Light Detection and Ranging (LiDAR) is an active remote sensing system which directly 

estimates the vertical structure of objects by measuring the time of flight between the emitted laser 

pulses and their received reflectance [10]. This system is well suited for measuring forest structural  

parameters [11–13]. In the case of the tropics, a canopy height model (CHM) derived from airborne 

LiDAR can accurately estimate AGB [14,15] and aboveground carbon stocks [16–18]. While airborne 

LiDAR is one of the most reliable tools used to estimate AGB in forests, acquisition costs of airborne 

LiDAR data are often prohibitive and hinder the monitoring of large forest areas [19]. Thus, alternative 

approaches to estimate AGB are required. 

Aerial photographs have been common tools used to retrieve forest information for many decades. 

They are well suited to measure forest cover [20], mean stand height [21], temporal dynamics of  

AGB [22] and individual tree parameters [23]. It has long been demonstrated that tree height can be 

measured by manual methods of stereo photogrammetry using aerial photographs. We can also create 

digital surface models (DSMs), which are similar to those derived from airborne LiDAR, from a pair 

of stereo aerial photographs using stereo matching algorithms. The DSM derived from aerial 

photographs have significant potential to accurately estimate tree height, stem volume and basal  

area [24,25]. Recent progress in computer science enables the production of DSMs using the Structure 

from Motion (SfM) approach with a much higher level of automation and much greater ease of use [26]. 

SfM aims to generate 3D geometry from an unordered overlapping collection of photographs using 

standard automated techniques employing computer vision and photogrammetry [27]. Applying the 

SfM approach enables us to produce a high spatial resolution 3D point cloud model similar to those 

derived from airborne LiDAR. Previous studies have demonstrated the usefulness of the SfM approach 

for topographic mapping and landslide monitoring [26,28–31]. A few studies have evaluated the 

quality of a canopy height model created by an SfM algorithm [32–34]. Nevertheless, no known 

studies evaluate the utility of a CHM created by a SfM algorithm for the estimation of AGB in  

the tropics. 

In general, CHMs are calculated as the difference between the height of the returned pulse or digital 

surface model (DSM) and ground elevation based on a digital terrain model (DTM). Because the 

pulses emitted from airborne LiDAR can penetrate below the canopy and reach the ground even in the 

forested areas, we can generate both a DTM and a DSM from airborne LiDAR alone. Compared with 

airborne LiDAR, obtaining under-canopy information using aerial photography is difficult. Thus, 

creating a DTM is the main limitation we face when calculating a CHM from aerial photography. The 

combined use of aerial photography derived DSM and airborne LiDAR derived DTM provides one 

solution. Previous studies have demonstrated that a CHM calculated from a DTM derived from 

airborne LiDAR and DSM derived from aerial photography have a significant potential for the 

successful monitoring of boreal forests [25,35,36]. However, this type of research has not yet been 

conducted in unmanaged tropical forests. 

In this study, we investigated the capabilities of a CHM derived from aerial photography using the 

SfM approach in estimating AGB in tropical forests. We created four types of CHMs, which were 

calculated from (1) aerial photography deriving a DSM and aerial photography deriving a DTM 

(CHMPP) (2) aerial photography deriving a DSM and airborne LiDAR deriving a DTM (CHMPL);  
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(3) airborne LiDAR deriving a DSM and aerial photography deriving a DTM (CHMLP), and (4) 

airborne LiDAR deriving a DSM and airborne LiDAR deriving a DTM (CHMLL). The results of AGB 

estimation using an aerial photography-derived CHM are compared with the approach of using an 

airborne LiDAR-derived CHM for AGB estimation. Finally, we investigated the ability of a DSM 

derived from aerial photography to estimate AGB. 

2. Study Area 

The study area is located in Kampong Thom Province in central Cambodia (Figure 1). Covering a 

total land area of 1,244,764 ha, this province experiences a typical monsoon Asian climate with a 

distinct dry season from November to April and a rainy season with about 1700 mm annual 

precipitation [37]. This lowland and nearly flat area has elevations from about 1 to 80 m above sea 

level. Four forest types occur in the study area: dense evergreen, deciduous, and degraded evergreen 

forests as well as an area of second-growth forest. While the dominant tree height is between 30m and 

40 m in dense evergreen forest, the height is only 10–15 m in deciduous forest. An area of  

second-growth forest is defined as any area after clearcutting; these areas have shrubs with few 

residual trees left standing. Degraded evergreen forest is an evergreen forest with evidence of illegal 

logging based on field surveys. Degraded evergreen includes fewer large trees than evergreen forest, 

but the landscape still retains its forested nature. 

 

Figure 1. Study area in Kampong Thom Province, Cambodia with an inset map showing 

the study site location within extreme Southeast Asia. 

3. Field Measurements 

Field measurements in each forest type were conducted at previously established permanent plots 

that had been created as a part of a different series of ongoing field studies. The number of plots in 
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dense evergreen, deciduous, degraded evergreen forest and regrowth were 10, 8, 4 and 8, respectively  

(Table 1). We used three sizes of rectangular permanent plots, which are 2500 m2 (50 m × 50 m),  

1200 m2 (30 m × 40 m) and 900 m2 (30 m × 30 m). Eight regrowth plots and four deciduous forest 

plots cover 2500 m2. Five evergreen and two deciduous forests plots cover 1200 m2. Five evergreen, 

four degraded forest and two deciduous forest plots cover 900 m2. Field measurements were collected 

under leaf-on canopy conditions between November 2011 and March 2012. Within each plot, the 

diameter at breast height (DBH) for all trees with DBH > 5 cm was measured. The coordinates of plot 

corners were collected using a Global Positioning System (GPS; GPSmap 62s, Garmin, Olathe, KS, 

USA). In addition, we measured the distance and the azimuth direction between each corner using a 

laser range finder (Trupulse 360, Laser Technology Inc., Centennial, CO, USA). Because the GPS 

instrument was not differentially corrected, the accuracy of GPS data was open to question. Thus,  

we selected the most reliable GPS corner coordinates for each plot through a verification process.  

Ota et al. (in press) will provide detailed descriptions of the verification process. From the selected 

corner, we determined the coordinate of other corners mathematically from the distance (i.e., 30 m,  

40 m or 50 m) and azimuth directions between the corners. We calculated AGB for each measured tree 

using general allometric equations [38]. AGB of each plot was then calculated by summing AGB of 

each tree and divided by the plot size. 

Table 1. Summary of field measurements of aboveground biomass. 

Forest type Count 
AGB (Mg/ha) 

Min Mean Max SD 

Evergreen 10 176 294 398 65 

Degraded evergreen 4 96 132 176 31 

Deciduous 8 38 98 150 40 

Regrowth 8 22 42 90 21 

4. Remote Sensing Data 

Aerial photographs and airborne LiDAR data were simultaneously acquired under leaf-on canopy 

conditions from a helicopter with an Airborne GPS and inertial measuring unit on 18–21 January 2012. 

Table 2 shows details of aerial photograph data and airborne LiDAR data specifications. The average 

flight altitude was 500 m above ground level and the average flight speed was 25 m/s. In the case of 

aerial photograph data, camera focal length, image size, and pixel size inside the camera were,  

51.2499 mm, 8984 × 6732 pixels and 6.0 μm, respectively. In the case of airborne LiDAR, pulse 

frequency was 100 kHz and average density of first returns-to-sensor was 26 point/m2. 
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Table 2. Details of aerial photograph data and airborne light detection and ranging 

(LiDAR) data specifications. 

Flight Conditions 
 

Flight altitude (above-ground) 500 m 

Flying Speed  25 m/s 

Acquisition date 18–21 January, 2012 

Aerial Photograph data acquisition 

Instruments 

DALSA Sensor + 60.5 Mp Image Sensor 8984 (H) x 

6732 (V) Full Frame CCD Color Image Sensor with 

Rodenstock HR Digaron-W 50 mm f/4 lens. 

Focal length  51.2499 mm 

Scale 8984 × 6732 pixels 

Pixel size 6 μm 

Ground resolution 7 cm 

Average density of point cloud 22 points/m2 

Airborne LiDAR data acquisition 

Instruments Optech ALTM 3100 from Optech, Inc. 

Pulse repetition frequency 100 kHz 

Scan frequency 53 Hz 

Foot print 0.125 m 

Wave length 1064 nm 

Range of view angles 20° 

Average density of first returns 26 pulse/m2 

5. Methods 

5.1. Processing of Airborne LiDAR data 

From the first and last returns of the airborne LiDAR data, we constructed a 1 m resolution grid of 

DSM (DSML) and DTM (DTML) (Figure 2). The last return data were used to create a DTM using 

ground echoes of reflected LiDAR pulses by filtering earlier returns. In the filtering process, the local 

minima with 10 × 10 m, assumed to represent the ground, were collected. Then, we produced a 

triangulated irregular network (TIN) that allowed for development of a DTM [39]. Finally, the TIN 

was converted to a regular grid at 1 m resolution to create a DTM. The first return-to-sensor data were 

also used to create an airborne LiDAR derived DSM. The DSM was created from the highest first 

return value of pulses for each grid cell. 
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Figure 2. Representative samples of DSM, DTM, and CHM. (a) DSMP; (b) DSML;  

(c) DTMP; (d) DTML; (e) CHMPP; (f) CHMPL; (g) CHMLP; (h) CHMLL. 

5.2. Processing of Aerial Photographs 

We used Photoscan Professional (http://www.agisoft.com; Petersburg, Russia), which is a type of 

commercial computer vision software, to generate a 3D point cloud from the sets of aerial 

photographs. Dandois and Ellis [34] and Turner et al. [40] provide a detailed description of the 

software and workflow. Briefly, the software uses the SfM approach for 3D reconstruction from 

overlapping collection of photographs. The workflow starts with the “Align Photos” stage, which is the 

process used to find the camera position and orientation for each aerial photograph and build a sparse 

point cloud model [41]. We selected “High accuracy” and “Ground control pre-selection” as settings. 

This stage was conducted in the real-world coordinate system, which was Universal Transverse 

Mercator projection (Zone 48N, WGS 84) based on the camera positions provided by Airborne GPS. 

We also manually identified ground control points (GCPs) within the aerial photographs to improve 

the accuracy of the align photos stage. The GCPs consisted of curbs, building corners and so on and 

were selected from a DSM created by airborne LiDAR data in 2012 (i.e., the DSM created in this 

study) and aerial orthophotography from 2014 (0.1 m pixel resolution, collected on 20 January 2014, 

developed by Asia Air Survey Co., Ltd. (Tokyo, Japan). We detected GCP positions in the aerial 

photographs by manual interpretation of 3D structures and RGB colors corresponding to GCP features 

identified in the DSM and the orthophotographs following Dandois and Ellis [33]. Horizontal and 

vertical coordinates for GCPs positions were obtained from a DSM derived from airborne LiDAR. 

Extracting vertical coordinates from airborne LiDAR, we used “Extract Values to Points” function of 

ArcGIS desktop 10.2. The next workflow step is the “Build dense point cloud” stage which generates a 

3D dense point cloud data based on the estimated camera position and orientation for each aerial 

photograph. We selected “medium quality” and “mild” as settings. Finally, a dense point cloud with  

22 points/m2, in average, was generated. 
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From the generated 3D dense point cloud data, we constructed a 1 m resolution grid of DSM 

(DSMP) and DTM (DTMP) (Figure 2), similar to those derived from airborne LiDAR. We used the 

same approach when we generated DTML and DTMP. First, we selected points assumed to represent 

the ground using the local minima with 10 × 10 m. Then, the TIN was then generated from the selected 

points. The TIN was converted to a regular grid at 1 m resolution to create a DTM. In addition, the 

DSM was created from the highest value of the point cloud for each grid cell. 

5.3. Calculation of CHM and CHM-Derived Variables 

CHMs were calculated as the relative height between the DSM and DTM. In this study, we created 

four CHMs, which are the difference between 1) DSMP and DTMP (CHMPP), 2) DSMP and DTML 

(CHMPL), 3) DSML and DTMP (CHMLP) and 4) DSML and DTML (CHMLL). The pixels of each CHM 

were classified as either canopy or non-canopy pixels based on their relative height to avoid the 

potential inclusion of non-tree objects. The pixels of the CHM were classified as canopy if the 

normalized canopy height was ≥1 m. For each CHM, the variables derived from the CHM were then 

calculated within each permanent plot, including mean canopy height (the average value of the relative 

height Hmean), 50th percentile of height (H50), maximum height (H100), and canopy density (D). The 

canopy density was calculated as the ratio between the number of pixels representing the canopy and 

the total number of pixels in each plot. 

5.4. Statistical Analysis 

The observed AGB based on field measurements was regressed against the variables derived from 

the CHM (Equation (1)): 

21

0

 dhB   (1) 

where B is the observed AGB (Mg/ha), β0 and β1 and β2 are the regression coefficients, h is the height 

variable (i.e., Hmean, H50, H100) and d is the canopy density. We used log transformation to simplify 

Equation (1) as a linear regression in Equation (2): 

dhB loglogloglog 210    (2) 

In addition, the influence of forest type (Ftype) on the regression was assessed by expanding 

Equation (2) with dummy variables representing forest type (i.e., evergreen, degraded evergreen, 

deciduous, and regrowth) following Ota et al. [18]. 





3

1

210 loglogloglog
i

ii zbdhB   (3) 

where bi is the regression coefficient of ith class and zi is the dummy variable of ith class. The dummy 

variables’ names z1, z2 and z3 take on values 1 for degraded evergreen, deciduous and regrowth, 

respectively and on value 0 for other types of forest in each respective group (z1, z2 and z3). 

First, AGB was regressed against height variables and/or canopy density for each of CHMPP, 

CHMPL, CHMLP, and CHMLL. Additionally, the pertinence of considering forest type in the analysis 

was assessed. Then, the best model used to estimate AGB using each of four CHMs was selected. 
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Finally, we compared the accuracy of AGB estimation using the best model of four CHMs. The 

coefficient of determination (R2), adjusted R2 and the root mean square error (RMSE) expressed in 

MG/ha were calculated to express the accuracy of estimates of AGB. Because we used the log 

transformed equation, R2 and adjusted R2 were calculated using the observed and estimated values of 

AGB. Furthermore, R2, adjusted R2 and RMSE were calculated using leave one-out cross-validation 

because of the limited number of field plots. 

6. Results 

Table 3 shows the results of the regression model fit depicting the relationship between AGB and 

CHM derived variables when we use CHMPL and CHMPP. When we use CHMPP, the best  

single-variable model was Hmean (R2 = 0.31, adjusted R2 = 0.28, RMSE = 98.82 Mg/ha), followed by 

H100 (R2 = 0.24, adjusted R2 = 0.22, RMSE = 103.06 Mg/ha). The R2, the adjusted R2 and the RMSE of 

the combined model of the height variable and canopy density were higher than the corresponding 

single height model. The best combined model was used Hmean + D (R2 = 0.41, adjusted R2 = 0.36, 

RMSE = 89.54 Mg/ha), followed by H100 + D (R2 = 0.36, adjusted R2 = 0.31, RMSE = 93.68 Mg/ha). 

Similarly, adding the forest type information improved the accurate estimation of AGB in terms of R2, 

adjusted R2 and RMSE. The model using D + Ftype yielded the highest adjusted R2 and the lowest 

RMSE in all models (R2 = 0.79, adjusted R2 = 0.76, RMSE = 51.79 Mg/ha). Thus, we conclude that  

D + Ftype is the best model that can be used to explain AGB independent from forest type when we  

use CHMPP. 

When we used CHMPL, the best single-variable model was Hmean (R2 = 0.93, adjusted R2 = 0.93, 

RMSE = 31.30 Mg/ha), followed by H50 (R2 = 0.92, adjusted R2 = 0.92, RMSE = 32.55 Mg/ha). The 

RMSE of the combined model of the height variable and canopy density was close to the 

corresponding single height model. In terms of the adjusted R2, canopy density was not informative 

because the adjusted R2 of the combined model of the height variable and canopy density was equal to 

or smaller than the corresponding single height model. Similarly, while adding the forest type 

information improved the accurate estimation of AGB in terms of RMSE, forest type information is 

not informative in terms of the adjusted R2. The adjusted R2 of single Hmean was the highest after 

considering forest type. Thus, we conclude that Hmean could explain AGB independent from forest type 

when we use CHMPL. 

Table 3. Results of estimation models each of canopy height model using canopy height 

model (CHM)PP and CHMPL. 

 
Variables RMSE (Mg/ha) R2 Adjusted R2 

CHMPP 

H50 109.91 0.20 0.17 

H100 103.06 0.24 0.22 

Hmean 98.82 0.31 0.28 

D 113.99 0.10 0.06 

H50 + D 97.97 0.30 0.25 

H100 + D 93.68 0.36 0.31 

Hmean + D 89.54 0.41 0.36 

H50 + Ftype 56.81 0.75 0.72 
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Table 3. Cont. 

 
Variables RMSE (Mg/ha) R2 Adjusted R2 

 

H100 + Ftype 68.24 0.66 0.61 

Hmean + Ftype 63.48 0.70 0.66 

D + Ftype 51.79 0.79 0.76 

H50 + D + Ftype 56.22 0.76 0.71 

H100 + D + Ftype 67.06 0.67 0.61 

Hmean + D + Ftype 62.12 0.71 0.65 

CHMPL 

H50 32.55 0.92 0.92 

H100 55.29  0.79 0.78 

Hmean 31.30 0.93 0.93 

D 114.42 0.10 0.07 

H50 + D 35.92 0.91 0.90 

H100 + D 55.16 0.79 0.78 

Hmean + D 33.36 0.93 0.92 

H50 + Ftype 30.31 0.93 0.92 

H100 + Ftype 46.10 0.84 0.81 

Hmean + Ftype 28.47 0.94 0.93 

D + Ftype 49.02 0.82 0.79 

H50 + D + Ftype 31.34 0.92 0.91 

H100 + D + Ftype 43.54 0.86 0.83 

Hmean + D + Ftype 29.47 0.93 0.92 

Table 4 shows the results of the regression model fit depicting the relationship between AGB and 

CHM derived variables when we use CHMLP and CHMLL. When we use CHMLP, the best  

single-variable model was Hmean (R2 = 0.25, adjusted R2 = 0.22, RMSE = 104.53 Mg/ha). As is the case 

with AGB estimation using CHMPP, adding the forest type information improved the accurate 

estimation of AGB in terms of R2, adjusted R2 and RMSE. The model using D + Ftype yielded  

the highest adjusted R2 and the lowest RMSE in all models (R2 = 0.78, adjusted R2 = 0.75,  

RMSE = 53.08 Mg/ha). Thus, we conclude that D + Ftype is the best model that can be used to explain 

AGB independent from forest type when we use CHMLP. When we use CHMLL the best  

single-variable model was Hmean (R2 = 0.94, adjusted R2 = 0.94, RMSE = 30.73 Mg/ha). As is the case 

with AGB estimation using CHMPL, canopy density and the forest type information did not improve 

the accuracy of AGB estimation. Thus, we conclude that Hmean is the best model that can be used to 

explain AGB independent from forest type when we use CHMLL. 

Table 4. Results of estimation models each of canopy height model using CHMLP and CHMLL. 

 
Variables RMSE (Mg/ha) R2 Adjusted R2 

CHMLP 

H50 118.28 0.14 0.11 

H100 106.72 0.19 0.16 

Hmean 104.53 0.25 0.22 

D 124.23 0.05 0.02 

H50 + D 118.31 0.13 0.07 

H100 + D 107.73 0.17 0.11 

Hmean + D 104.77 0.24 0.18 
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Table 4. Cont. 

 
Variables RMSE (Mg/ha) R2 Adjusted R2 

 

H50 + Ftype 77.70 0.60 0.53 

H100 + Ftype 68.80 0.66 0.60 

Hmean + Ftype 77.82 0.59 0.53 

D + Ftype 53.08 0.78 0.75 

H50 + D + Ftype 78.26 0.59 0.51 

H100 + D + Ftype 69.55 0.65 0.58 

Hmean + D + Ftype 78.08 0.59 0.51 

CHMLL 

H50 32.17 0.93 0.92 

H100 54.89 0.81 0.8 

Hmean 30.73 0.94 0.94 

D 110.11 0.15 0.12 

H50 + D 33.04 0.92 0.92 

H100 + D 53.01 0.82 0.8 

Hmean + D 31.25 0.94 0.93 

H50 + Ftype 31.84 0.92 0.91 

H100 + Ftype 46.45 0.84 0.81 

Hmean + Ftype 28.63 0.94 0.93 

D + Ftype 51.21 0.80 0.77 

H50 + D + Ftype 32.48 0.92 0.9 

H100 + D + Ftype 45.02 0.85 0.82 

Hmean + D + Ftype 29.12 0.94 0.92 

Figure 3 shows the observed versus predicted values for AGB estimation using the best model of 

CHMPP, CHMPL, CHMLP and CHMLL. The predicted values using CHMPL model were close to the 

predicted values using the CHMLL model, while the predicted values using the CHMPP model were far 

from the predicted values using the CHMPL and CHMLL models. Both regression lines using the 

CHMPL and CHMLL model were almost in line with the 1:1 line. 
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Figure 3. Cont. 

  

Figure 3. Observed aboveground biomass (AGB) versus predicted AGB from the best 

model of each of the canopy height models (CHMs). (a) CHMPP; (b) CHMPL; (c) CHMLL. 

A diagonal dotted line and a cross solid line indicate the 1:1 line and regression line 

between predicted AGB and observed AGB, respectively. 

7. Discussion 

When CHMPL and CHMLL were used, the single-variable models using Hmean yielded a higher R2 

and lower RMSE compared with other single-variable models (Tables 3 and 4). In the case of tropical 

forests, several studies using airborne LiDAR have shown how mean height can be used to estimate 

AGB or aboveground carbon density in the tropics [15,17,42,43]. Our study has confirmed that mean 

height is particularly a well suited index to estimate AGB, even if we used a DSM derived from aerial 

photography using the SfM approach. 

The R2, RMSE and the predicted values of the best model from CHMPL were close to the best model 

from CHMLL (Tables 3 and 4, Figure 3). These results imply that AGB estimation using metrics from a 

combination of aerial photography with the SfM approach and airborne LiDAR was comparable to that 

using metrics from only airborne LiDAR. Previous studies showed that height metrics from aerial 

photography allow the accurate estimation canopy height in temperate forests [32–34], and height, 

diameter, basal area, stem volume and AGB in boreal forests [36]. Our study demonstrated the ability 

to estimate AGB in tropical forests using the combination of aerial photography with the SfM 

approach and airborne LiDAR. Acquiring under-canopy information from aerial photography is the 

difficult task. Thus, difficulty in creating a DTM is the main limitation when we calculate a CHM 

using only aerial photography. As a result, the estimation accuracy using CHMPP and CHMLP were 

lower than the estimation accuracy using CHMPL and CHMLL (Tables 3 and 4). These results imply 

that the accuracy of a DTM derived from aerial photography is not enough to estimate AGB in the 

tropics and that, for the accurate estimation of AGB, at least a single acquisition of airborne LiDAR is 

required to create a DTM. However, once a DTM was created by airborne LiDAR, aerial photographs 
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can be used to accurately estimate AGB. This represents a strong advantage in the case of REDD+ 

implementation because AGB should be estimated repeatedly to monitor deforestation and forest 

degradation over extended time frames for REDD+ implementation. While this study used a helicopter 

to acquire the aerial photography, use of a low-cost Unmanned Aerial Vehicle (UAV) is becoming a 

popular method to collect aerial photographs [34,44]. A UAV may contribute to a dramatic cost 

reduction of repeated monitoring of tropical forests. Thus, we need further research to evaluate the 

applicability of aerial photographs captured from a UAV, instead of manned aerial vehicle, with SfM 

approaches in tropical forests. 

CHMPL accurately estimated AGB without the consideration of forest types (Table 3). Similar 

results were obtained in previous studies that estimated AGB using airborne LiDAR in boreal 

coniferous forests [45], temperate coniferous forests [46] and tropical forests [18]. Our results 

confirmed that the combination of aerial photography with the SfM approach and airborne LiDAR can 

also estimate AGB independently of forest type in tropical forests. These results imply that the 

calibration process of the equation between AGB and CHM for each individual forest type is not 

necessary. Only the calibration process for data sets gathering forest types all together is adequate. 

This may provide a strong advantage for the use of aerial photography and airborne LiDAR in areas 

where several forest types are intricately distributed and mixed, because it is possible to simplify the 

calibration process, including laborious and time-consuming forest inventory for each forest type [18]. 

Although several studies have demonstrated the power of using airborne LiDAR to estimate AGB, 

the acquisition of airborne LiDAR is costly. Thus, alternative approaches that can be used to estimate 

AGB are required. In this study, we investigated the capabilities of a DSM derived from aerial 

photograph using the SfM approach to estimate AGB in tropical forests and compared the results with 

the more promising airborne LiDAR approach. In conclusion, AGB can be estimated from metrics 

derived from aerial photographs using the SfM approach in the tropics. However, for the accurate 

estimation of AGB, we need a more accurate DTM than the DTM derived from aerial photography 

using SfM approach. Thus, the acquisition of airborne LiDAR that can be used to create a DTM is 

required. When we calibrate the parameters of the equation between AGB and related metrics, the 

calibration process for each individual forest type is not necessary. In the future, the applicability of 

UAV with SfM approaches in tropical forests should be evaluated. 
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