Effects of Center Metals in Porphines on Nanomechanical Gas Sensing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yoshikawa, G.; Akiyama, T.; Gautsch, S.; Vettiger, P.; Rohrer, H. Nanomechanical Membrane-type Surface Stress Sensor. Nano Lett. 2011, 11, 1044–1048. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, G.; Akiyama, T.; Loizeau, F.; Shiba, K.; Gautsch, S.; Nakayama, T.; Vettiger, P.; Rooij, F.N.; Aono, M. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS) with Improved Sensitivity. Sensors 2012, 12, 15873–15887. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, G.; Loizeau, F.; Lee, C.J.Y.; Akiyama, T.; Shiba, K.; Gautsch, S.; Nakayama, T.; Vettiger, P.; de Rooij, N.F.; Aono, M. Double-Side-Coated Nanomechanical Membrane-Type Surface Stress Sensor (MSS) for One-Chip–One-Channel Setup. Langmuir 2013, 29, 7551–7556. [Google Scholar] [CrossRef] [PubMed]
- S Guerrero, R.J.; Nguyen, F.; Yoshikawa, G. Real-time gas identification on mobile platforms using a nanomechanical membrane-type surface stress sensor. EPJ Tech. Instrum. 2014, 1, 9. [Google Scholar] [CrossRef]
- Loizeau, F.; Akiyama, T.; Gautsch, S.; Vettiger, P.; Yoshikawa, G.; de Rooij, N.F. Comparing membrane- and cantilever-based surface stress sensors for reproducibility. Sens. Actuators A Phys. 2015, 228, 9–15. [Google Scholar] [CrossRef]
- Imamura, G.; Shiba, K.; Yoshikawa, G. Smell identification of spices using nanomechanical membrane-type surface stress sensors. Jpn. J. Appl. Phys. 2016, 55, 1102B3. [Google Scholar] [CrossRef]
- Shiba, K.; Takei, T.; Yoshikawa, G.; Ogawa, M. Deposition of a titania layer on spherical porous silica particles and their nanostructure-induced vapor sensing properties. Nanoscale 2017, 9, 16791–16799. [Google Scholar] [CrossRef] [PubMed]
- Shiba, K.; Tamura, R.; Imamura, G.; Yoshikawa, G. Data-driven nanomechanical sensing: Specific information extraction from a complex system. Sci. Rep. 2017, 7, 3661. [Google Scholar] [CrossRef] [PubMed]
- Osica, I.; Melo, A.F.A.A.; Imamura, G.; Shiba, K.; Ji, Q.; Hill, J.P.; Crespilho, F.N.; Kurzydłowski, K.J.; Yoshikawa, G.; Ariga, K. Fabrication of Silica-Protein Hierarchical Nanoarchitecture with Gas-Phase Sensing Activity. J. Nanosci. Nanotechnol. 2017, 17, 5908–5917. [Google Scholar] [CrossRef]
- Lvova, L.; Di Natale, C.; Paolesse, R. Porphyrin-based chemical sensors and multisensor arrays operating in the liquid phase. Sens. Actuators B Chem. 2013, 179, 21–31. [Google Scholar] [CrossRef]
- Paolesse, R.; Lvova, L.; Nardis, S.; Di Natale, C.; D’Amico, A.; Lo Castro, F. Chemical images by porphyrin arrays of sensors. Microchim. Acta 2008, 163, 103–112. [Google Scholar] [CrossRef]
- Di Natale, C.; Monti, D.; Paolesse, R. Chemical sensitivity of porphyrin assemblies. Mater. Today 2010, 13, 46–52. [Google Scholar] [CrossRef]
- D’Amico, A.; Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A. Metalloporphyrins as Basic Material for Volatile Sensitive Sensors. Sens. Actuators A Phys. 2000, 65, 209–215. [Google Scholar] [CrossRef]
- Monti, D.; Nardis, S.; Stefanelli, M.; Paolesse, R.; Di Natale, C.; D’Amico, A. Porphyrin-based Nanostructures for Sensing Applications. J. Sens. 2009, 2009, 856053. [Google Scholar] [CrossRef]
- Montmeat, P.; Madonia, S.; Pasquinet, E.; Hairault, L.; Gros, C.P.; Barbe, J.M.; Guilard, R. Metalloporphyrin as Sensing Material for Quartz-Crystal Microbalance Nitroaromatics Sensors. IEEE Sens. J. 2005, 5, 610–615. [Google Scholar] [CrossRef]
- Brunink, J.A.J.; Di Natale, C.; Bungaro, F.; Davide, F.A.M.; D’Amico, A.; Paolesse, R.; Boschi, T.; Faccio, M.; Ferri, G. The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors. Anal. Chim. Acta 1996, 325, 53–64. [Google Scholar] [CrossRef]
- Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; Goletti, C.; D’Amico, A. Characterization and design of porphyrins-based broad selectivity chemical sensors for electronic nose applications. Sens. Actuator B Chem. 1998, 52, 162–168. [Google Scholar] [CrossRef]
- Di Natale, C.; Macagnano, A.; Repole, G.; Saggio, G.; D’Amico, A.; Paolesse, R.; Boschi, T. The exploitation of metalloporphyrins as chemically interactive material in chemical sensors. Mater. Sci. Eng. C 1998, 5, 209–215. [Google Scholar] [CrossRef]
- Macagnano, A.; Zampetti, E.; Pistillo, B.R.; Pantalei, S.; Sgreccia, E.; Paolesse, R.; d’Agostino, R. Double layer sensors mimic olfactive perception: A case study. Thin Solid Films 2008, 516, 7857–7865. [Google Scholar] [CrossRef]
- Reddy, C.V.B.; Khaderbad, M.A.; Gandhi, S.; Kandpal, M.; Patil, S.; Chetty, K.N.; Rajulu, K.G.; Chary, P.C.K.; Ravikanth, M.; Rao, V.R. Piezoresistive SU-8 Cantilever With Fe(III)Porphyrin Coating for CO Sensing. IEEE Trans. Nanotechnol. 2012, 117, 701–706. [Google Scholar] [CrossRef]
- Osica, I.; Imamura, G.; Shiba, K.; Ji, Q.; Shrestha, L.K.; Hill, J.P.; Kurzydłowski, K.J.; Yoshikawa, G.; Ariga, K. Highly Networked Capsular Silica–Porphyrin Hybrid Nanostructures as Efficient Materials for Acetone Vapor Sensing. ACS Appl. Mater. Interf. 2017, 9, 9945–9954. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, A.D.F.; Brittle, S.; Richardson, T.H.; Hutchinson, J.; Hunter, C.A. Detection of Volatile Organic Compounds Using Porphyrin Derivatives. J. Phys. Chem. B 2010, 114, 11697–11702. [Google Scholar] [CrossRef] [PubMed]
- Rakow, N.A.; Suslick, K.S. A colorimetric sensor array for odour visualization. Nature 2000, 406, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Kemling, J.W.; Feng, L.; Suslick, K.S. A colorimetric sensor array of porous pigments. Analyst 2009, 134, 2453–2457. [Google Scholar] [CrossRef] [PubMed]
- Janzen, M.C.; Ponder, J.B.; Bailey, D.P.; Ingison, C.K.; Suslick, K.S. Colorimetric Sensor Arrays for Volatile Organic Compounds. Anal. Chem. 2006, 78, 3591–3600. [Google Scholar] [CrossRef] [PubMed]
- Commission on Biochemical Nomenclature (JCBN). Nomenclature of tetrapyrroles. Eur. J. Biochem. 1988, 178, 277–328. [Google Scholar]
- Biesaga, M.; Pyrzynska, K.; Trojanowicz, M. Porphyrins in analytical chemistry. A review. Talanta 2000, 51, 209–224. [Google Scholar] [CrossRef]
- Moin, S.T.; Hofer, T.S. Zinc- and copper-porphyrins in aqueous solution—Two similar complexes with strongly contrasting hydration. Mol. Biosyst. 2016, 12, 2288–2295. [Google Scholar] [CrossRef] [PubMed]
- Senge Mathias, O.; Bischoff, I.; Nelson Nora, Y.; Smith Kevin, M. Synthesis, reactivity and structural chemistry of 5,10,15,20-tetraalkylporphyrins. J. Porphyrins. Phthalocyanines 1999, 3, 99–116. [Google Scholar]
- Neya, S.; Funasaki, N. meso-Tetra(tert-butyl)porphyrin as a precursor of porphine. Tetrahedron Lett. 2002, 43, 1057–1058. [Google Scholar] [CrossRef]
- Dogutan, D.K.; Ptaszek, M.; Lindsey, J.S. Direct Synthesis of Magnesium Porphine via 1-Formyldipyrromethane. J. Org. Chem. 2007, 72, 5008–5011. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.P.; Feng, Y.Q.; Gu, C.Z.; Meng, S.X.; Zhang, B. The facile synthesis of 5-formylporphyrin. Chin. Chem. Lett. 2012, 23, 505–508. [Google Scholar] [CrossRef]
- Neya, S.; Funasaki, N.; Sato, T.; Igarashi, N.; Tanaka, N. Structural Analysis of the Myoglobin Reconstituted with Iron Porphin. J. Biol. Chem. 1993, 268, 8935–8942. [Google Scholar] [PubMed]
- Thies, S.; Bornholdt, C.; Kohler, F.; Sonnichsen, F.D.; Nather, C.; Tuczek, F.; Herges, R. Coordination-Induced Spin Crossover (CISCO) through Axial Bonding of Substituted Pyridines to Nickel-Porphyrins: Sigma-Donor versus pi-Acceptor Effects. Chem. Eur. J. 2010, 16, 10074–10083. [Google Scholar] [CrossRef] [PubMed]
- Schalk, O.; Liang, Y.; Unterreiner, A.N. On Ligand Binding Energies in Porphyrinic Systems. Z. Phys. Chem. 2013, 227, 35–47. [Google Scholar] [CrossRef]
- Favereau, L.; Cnossen, A.; Kelber, J.B.; Gong, J.Q.; Oetterli, R.M.; Cremers, J.; Herz, L.M.; Anderson, H.L. Six-Coordinate Zinc Porphyrins for Template-Directed Synthesis of Spiro-Fused Nanorings. J. Am. Chem. Soc. 2015, 137, 14256–14259. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, C.-C.; Li, L.; Hu, C.-J.; Lang, J.-P. Host-guest assembly for highly sensitive probing of a chiral mono-alcohol with a zinc trisporphyrinate. Sci. Rep. 2017, 7, 3829. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Xu, J.; Yang, Y.; Wen, J.; Jia, C. A colorimetric array of metalloporphyrin derivatives for the detection of volatile organic compounds. Mater. Sci. Eng. 2011, 176, 1271–1276. [Google Scholar] [CrossRef]
- Bajju, G.D.; Kundan, S.; Kapahi, A.; Gupta, D. Synthesis and Spectroscopic Studies of Axially Ligated Zn(II)5,10,15,20-meso-tetra(p-chlorophenyl)porphyrin with Oxygen and Nitrogen Donors. J. Chem. 2013, 2013, 135815. [Google Scholar] [CrossRef]
- Imai, H.; Nakagawa, S.; Kyuno, E. Recognition of axial ligands by a zinc porphyrin host on the basis of nonpolar interligand interaction. J. Am. Chem. Soc. 1992, 114, 6719–6723. [Google Scholar] [CrossRef]
- Ngo, T.H.; Webre, W.A.; Lim, G.N.; Ariga, K.; Galli, M.; Goldup, S.; Hill, J.P.; D’Souza, F. Porphyrinoid Rotaxanes: Building a Mechanical Picket Fence. Chem. Sci. 2017, 8, 6679–6685. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kang, N.S.; Kang, Y.K. Reply to “Comment on ‘Binding Free Energies of Inhibitors to Iron Porphyrin Complex as a Model for Cytochrome P450’”. Biopolymers 2012, 97, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.-S.; Scheiner, S. Electronic structure and bonding in metal porphyrins, metal = Fe, Co, Ni, Cu, Zn. J. Chem. Phys. 2002, 117, 14. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, H.T.; Minami, K.; Imamura, G.; Shiba, K.; Yoshikawa, G. Effects of Center Metals in Porphines on Nanomechanical Gas Sensing. Sensors 2018, 18, 1640. https://doi.org/10.3390/s18051640
Ngo HT, Minami K, Imamura G, Shiba K, Yoshikawa G. Effects of Center Metals in Porphines on Nanomechanical Gas Sensing. Sensors. 2018; 18(5):1640. https://doi.org/10.3390/s18051640
Chicago/Turabian StyleNgo, Huynh Thien, Kosuke Minami, Gaku Imamura, Kota Shiba, and Genki Yoshikawa. 2018. "Effects of Center Metals in Porphines on Nanomechanical Gas Sensing" Sensors 18, no. 5: 1640. https://doi.org/10.3390/s18051640
APA StyleNgo, H. T., Minami, K., Imamura, G., Shiba, K., & Yoshikawa, G. (2018). Effects of Center Metals in Porphines on Nanomechanical Gas Sensing. Sensors, 18(5), 1640. https://doi.org/10.3390/s18051640