Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding
Abstract
:1. Introduction
2. Fabrication and Sensing Principle
3. Experiments and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, P.; Gu, F.X.; Zhang, L.; Tong, L. Polymer microfiber rings for high sensitivity optical humidity sensing. Appl. Opt. 2011, 50, G7–G10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chen, Y. PMMA-rod-assisted temperature sensor based on a two-turn thick microfiber resonator. J. Mod. Opt. 2016, 63, 159–163. [Google Scholar] [CrossRef]
- Lim, K.S.; Harun, S.W.; Damanhuri, S.S.A.; Jasim, A.A.; Tio, C.K.; Ahmad, H. Current sensor based on microfiber knot resonator. Sens. Actuators A Phys. 2011, 167, 60–62. [Google Scholar] [CrossRef]
- Li, X.; Ding, H. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid. Opt. Lett. 2012, 37, 5187–5189. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Dong, J.; He, D.; Wang, Y.; Qiu, W.; Yu, J.; Guan, H.; Zhu, W.; Zhong, Y.; Luo, Y.; et al. Interlinked add-drop filter with amplitude modulation routing a fiber-optic microring to a lithium niobate microwaveguide. Opt. Lett. 2017, 42, 1496–1499. [Google Scholar] [CrossRef]
- Shahal, S.; Klevin, A.; Masri, G.; Fridman, M. Fused fiber micro-knots. Appl. Opt. 2016, 55, 4538–4541. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Wang, X.; Yang, H.; Wang, S.; Wang, J. Resonant mode characteristics of microfiber knot-type ring resonator and its salinity sensing experiment. IEEE Photonics J. 2015, 7, 6802308. [Google Scholar]
- Zhu, H.; White, I.M.; Suter, J.D.; Dale, P.S.; Fan, X. Analysis of biomolecule detection with optofluidic ring resonator sensors. Opt. Express 2007, 15, 9139–9146. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, R.; Jung, Y.; Brambilla, G. In-line absorption sensor based on coiled optical microfiber. Appl. Phys. Lett. 2011, 98, 173504. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Wang, P.; Brambilla, G. A microfiber coupler tip thermometer. Opt. Express 2012, 20, 5402–5408. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, T.; Rao, Y.; Gong, Y. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B Chem. 2011, 155, 258–263. [Google Scholar] [CrossRef]
- Xiao, L.; Birks, T.A. High finesse microfiber knot resonators made from double-ended tapered fibers. Opt. Lett. 2011, 36, 1098–1100. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Wang, C.; Xuan, H.; Jin, W. Tunable comb filters and refractive index sensors based on fibre loop mirror with inline high birefringence microfiber. Opt. Lett. 2013, 38, 4277–4280. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Tong, L.; Vienne, G.; Guo, X.; Tsao, A.; Yang, Q.; Yang, D. Demonstration of optical microfiber knot resonators. Appl. Phys. Lett. 2006, 88, 223501. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, Q.; Vienne, G.; Li, Y.; Tong, L.; Zhang, J.; Hu, L. Demonstration of microfiber knot laser. Appl. Phys. Lett. 2006, 89, 143513. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Wang, X.; Liao, Y.; Wang, J. Temperature sensing in seawater based on microfiber knot resonator. Sensors 2014, 14, 18515–18525. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ding, M.; Newson, T.; Brambilla, G. A review of microfiber and nanofiber based optical sensors. Open Opt. J. 2013, 7, 32–57. [Google Scholar] [CrossRef]
- Amili, A.E.; Souza, M.C.M.M.; Vallini, F.; Frateschi, N.C.; Fainman, Y. Magnetically controllable silicon microring with ferrofluid cladding. Opt. Lett. 2016, 41, 5576–5579. [Google Scholar] [CrossRef]
- Tong, L.; Gattass, R.R.; Ashcom, J.B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003, 18, 816–819. [Google Scholar] [CrossRef]
- Li, X.; Ding, H. A stable evanescent field-based microfiber knot resonator refractive index sensor. IEEE Photonics Technol. Lett. 2014, 26, 1625–1628. [Google Scholar] [CrossRef]
- Hong, C.; Yang, S.; Horng, H.; Yang, H. Control parameters for the tunable refractive index of magnetic fluid films. J. Appl. Phys. 2003, 94, 3849. [Google Scholar] [CrossRef]
- Violakis, G.; Korakas, N.; Pissadakis, S. Differential loss magnetic field sensor using a ferrofluid encapsulated D-shaped optical fiber. Opt. Lett. 2018, 43, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, X.; Di, Z.; Zhang, J.; Li, X. Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids. Appl. Phys. Lett. 2007, 91, 121116. [Google Scholar] [CrossRef]
- Dong, S.; Pu, S.; Huang, J. Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry-Pérot fiber interferometers. Appl. Phys. Lett. 2013, 103, 111907. [Google Scholar] [CrossRef]
- Pu, S.; Wang, H.; Wang, N.; Zeng, X. Extremely large bandwidth and ultralow-dispersion slow light in photonic crystal waveguides with magnetically controllability. Appl. Phys. B 2013, 112, 223–229. [Google Scholar] [CrossRef]
- Candiani, A.; Argyros, A.; Leon-Saval, S.; Lwin, R.; Selleri, S.; Pissadakis, S. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber. Appl. Phys. Lett. 2014, 104, 111106. [Google Scholar] [CrossRef]
- Jiang, Z.; Dong, J.; Hu, S.; Zhang, Y.; Chen, Y.; Luo, Y.; Zhu, W.; Qiu, W.; Lu, H.; Guan, H.; et al. High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid. Opt. Lett. 2018, 43, 4743–4746. [Google Scholar] [CrossRef]
- Dong, S.; Pu, S.; Wang, H. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing. Opt. Express 2014, 22, 19108–19116. [Google Scholar] [CrossRef]
- Costa, G.K.B.; Gouvêa, P.M.P.; Soares, L.M.B.; Pereira, J.M.B.; Favero, F.; Braga, A.M.B.; Palffy-Muhoray, P.; Bruno, A.C.; Carvalho, I.C.S. In-fiber Fabry-Perot interferometer for strain and magnetic field sensing. Opt. Express 2016, 24, 14690–14696. [Google Scholar] [CrossRef]
- Deng, M.; Huang, C.; Liu, D.; Jin, W.; Zhu, T. All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer. Opt. Express 2015, 23, 20668–20674. [Google Scholar] [CrossRef]
Number | Structure | Sensitivity | Reference |
---|---|---|---|
1 | MKR (silica gel) | 3 pm/mT (0.3 pm/Gs) | [4] |
2 | Silicon microring | 1.68 pm/Oe | [18] |
3 | Taper-like and lateral-offset fusion splicing | 26 pm/Oe | [28] |
4 | Fabry–Perot interferometer | 44 pm/mT (4.4 pm/Gs) | [29] |
5 | Taper microstructured fiber | 117.9 pm/mT (11.79 pm/Gs) | [30] |
6 | MKR (MgF2 substrate) | 277 pm/mT (27.7 pm/Gs) | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Pu, S.; Zhao, Y.; Yao, T. Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding. Sensors 2018, 18, 4358. https://doi.org/10.3390/s18124358
Li Y, Pu S, Zhao Y, Yao T. Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding. Sensors. 2018; 18(12):4358. https://doi.org/10.3390/s18124358
Chicago/Turabian StyleLi, Yuqi, Shengli Pu, Yongliang Zhao, and Tianjun Yao. 2018. "Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding" Sensors 18, no. 12: 4358. https://doi.org/10.3390/s18124358
APA StyleLi, Y., Pu, S., Zhao, Y., & Yao, T. (2018). Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding. Sensors, 18(12), 4358. https://doi.org/10.3390/s18124358