Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding
Abstract
1. Introduction
2. Fabrication and Sensing Principle
3. Experiments and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, P.; Gu, F.X.; Zhang, L.; Tong, L. Polymer microfiber rings for high sensitivity optical humidity sensing. Appl. Opt. 2011, 50, G7–G10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chen, Y. PMMA-rod-assisted temperature sensor based on a two-turn thick microfiber resonator. J. Mod. Opt. 2016, 63, 159–163. [Google Scholar] [CrossRef]
- Lim, K.S.; Harun, S.W.; Damanhuri, S.S.A.; Jasim, A.A.; Tio, C.K.; Ahmad, H. Current sensor based on microfiber knot resonator. Sens. Actuators A Phys. 2011, 167, 60–62. [Google Scholar] [CrossRef]
- Li, X.; Ding, H. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid. Opt. Lett. 2012, 37, 5187–5189. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Dong, J.; He, D.; Wang, Y.; Qiu, W.; Yu, J.; Guan, H.; Zhu, W.; Zhong, Y.; Luo, Y.; et al. Interlinked add-drop filter with amplitude modulation routing a fiber-optic microring to a lithium niobate microwaveguide. Opt. Lett. 2017, 42, 1496–1499. [Google Scholar] [CrossRef]
- Shahal, S.; Klevin, A.; Masri, G.; Fridman, M. Fused fiber micro-knots. Appl. Opt. 2016, 55, 4538–4541. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Wang, X.; Yang, H.; Wang, S.; Wang, J. Resonant mode characteristics of microfiber knot-type ring resonator and its salinity sensing experiment. IEEE Photonics J. 2015, 7, 6802308. [Google Scholar]
- Zhu, H.; White, I.M.; Suter, J.D.; Dale, P.S.; Fan, X. Analysis of biomolecule detection with optofluidic ring resonator sensors. Opt. Express 2007, 15, 9139–9146. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, R.; Jung, Y.; Brambilla, G. In-line absorption sensor based on coiled optical microfiber. Appl. Phys. Lett. 2011, 98, 173504. [Google Scholar] [CrossRef]
- Ding, M.; Wang, P.; Brambilla, G. A microfiber coupler tip thermometer. Opt. Express 2012, 20, 5402–5408. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, T.; Rao, Y.; Gong, Y. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B Chem. 2011, 155, 258–263. [Google Scholar] [CrossRef]
- Xiao, L.; Birks, T.A. High finesse microfiber knot resonators made from double-ended tapered fibers. Opt. Lett. 2011, 36, 1098–1100. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Wang, C.; Xuan, H.; Jin, W. Tunable comb filters and refractive index sensors based on fibre loop mirror with inline high birefringence microfiber. Opt. Lett. 2013, 38, 4277–4280. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Tong, L.; Vienne, G.; Guo, X.; Tsao, A.; Yang, Q.; Yang, D. Demonstration of optical microfiber knot resonators. Appl. Phys. Lett. 2006, 88, 223501. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, Q.; Vienne, G.; Li, Y.; Tong, L.; Zhang, J.; Hu, L. Demonstration of microfiber knot laser. Appl. Phys. Lett. 2006, 89, 143513. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Wang, X.; Liao, Y.; Wang, J. Temperature sensing in seawater based on microfiber knot resonator. Sensors 2014, 14, 18515–18525. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ding, M.; Newson, T.; Brambilla, G. A review of microfiber and nanofiber based optical sensors. Open Opt. J. 2013, 7, 32–57. [Google Scholar] [CrossRef]
- Amili, A.E.; Souza, M.C.M.M.; Vallini, F.; Frateschi, N.C.; Fainman, Y. Magnetically controllable silicon microring with ferrofluid cladding. Opt. Lett. 2016, 41, 5576–5579. [Google Scholar] [CrossRef]
- Tong, L.; Gattass, R.R.; Ashcom, J.B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003, 18, 816–819. [Google Scholar] [CrossRef]
- Li, X.; Ding, H. A stable evanescent field-based microfiber knot resonator refractive index sensor. IEEE Photonics Technol. Lett. 2014, 26, 1625–1628. [Google Scholar] [CrossRef]
- Hong, C.; Yang, S.; Horng, H.; Yang, H. Control parameters for the tunable refractive index of magnetic fluid films. J. Appl. Phys. 2003, 94, 3849. [Google Scholar] [CrossRef]
- Violakis, G.; Korakas, N.; Pissadakis, S. Differential loss magnetic field sensor using a ferrofluid encapsulated D-shaped optical fiber. Opt. Lett. 2018, 43, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, X.; Di, Z.; Zhang, J.; Li, X. Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids. Appl. Phys. Lett. 2007, 91, 121116. [Google Scholar] [CrossRef]
- Dong, S.; Pu, S.; Huang, J. Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry-Pérot fiber interferometers. Appl. Phys. Lett. 2013, 103, 111907. [Google Scholar] [CrossRef]
- Pu, S.; Wang, H.; Wang, N.; Zeng, X. Extremely large bandwidth and ultralow-dispersion slow light in photonic crystal waveguides with magnetically controllability. Appl. Phys. B 2013, 112, 223–229. [Google Scholar] [CrossRef]
- Candiani, A.; Argyros, A.; Leon-Saval, S.; Lwin, R.; Selleri, S.; Pissadakis, S. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber. Appl. Phys. Lett. 2014, 104, 111106. [Google Scholar] [CrossRef]
- Jiang, Z.; Dong, J.; Hu, S.; Zhang, Y.; Chen, Y.; Luo, Y.; Zhu, W.; Qiu, W.; Lu, H.; Guan, H.; et al. High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid. Opt. Lett. 2018, 43, 4743–4746. [Google Scholar] [CrossRef]
- Dong, S.; Pu, S.; Wang, H. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing. Opt. Express 2014, 22, 19108–19116. [Google Scholar] [CrossRef]
- Costa, G.K.B.; Gouvêa, P.M.P.; Soares, L.M.B.; Pereira, J.M.B.; Favero, F.; Braga, A.M.B.; Palffy-Muhoray, P.; Bruno, A.C.; Carvalho, I.C.S. In-fiber Fabry-Perot interferometer for strain and magnetic field sensing. Opt. Express 2016, 24, 14690–14696. [Google Scholar] [CrossRef]
- Deng, M.; Huang, C.; Liu, D.; Jin, W.; Zhu, T. All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer. Opt. Express 2015, 23, 20668–20674. [Google Scholar] [CrossRef]
Number | Structure | Sensitivity | Reference |
---|---|---|---|
1 | MKR (silica gel) | 3 pm/mT (0.3 pm/Gs) | [4] |
2 | Silicon microring | 1.68 pm/Oe | [18] |
3 | Taper-like and lateral-offset fusion splicing | 26 pm/Oe | [28] |
4 | Fabry–Perot interferometer | 44 pm/mT (4.4 pm/Gs) | [29] |
5 | Taper microstructured fiber | 117.9 pm/mT (11.79 pm/Gs) | [30] |
6 | MKR (MgF2 substrate) | 277 pm/mT (27.7 pm/Gs) | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Pu, S.; Zhao, Y.; Yao, T. Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding. Sensors 2018, 18, 4358. https://doi.org/10.3390/s18124358
Li Y, Pu S, Zhao Y, Yao T. Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding. Sensors. 2018; 18(12):4358. https://doi.org/10.3390/s18124358
Chicago/Turabian StyleLi, Yuqi, Shengli Pu, Yongliang Zhao, and Tianjun Yao. 2018. "Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding" Sensors 18, no. 12: 4358. https://doi.org/10.3390/s18124358
APA StyleLi, Y., Pu, S., Zhao, Y., & Yao, T. (2018). Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding. Sensors, 18(12), 4358. https://doi.org/10.3390/s18124358