Discrimination of Malus Taxa with Different Scent Intensities Using Electronic Nose and Gas Chromatography–Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Floral Scent Determination
2.2.1. E-Nose Analysis
2.2.2. HS-SPME-GC-MS Analysis
2.3. Data Analysis
3. Results
3.1. Discrimination of the Different Taxa Using the E-Nose
3.2. Discrimination of the Different Taxa Using GC–MS
3.2.1. Identification and Comparison of the Volatile Compounds among the Different Taxa
3.2.2. PCA Based on the GC–MS Data
3.3. Correlation between E-Nose and GC–MS
4. Discussion
4.1. Correlation between the Scent Discrimination of the E-Nose and Sensory Evaluation
4.2. Correlation between the E-Nose and GC–MS Analysis
4.3. The Contribution of Compounds to Flower Aroma of Crabapple
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nagata, Y.; Takeuchi, N. Measurement of odor threshold by triangle odor bag method. Odor Meas. Rev. 2003, 118, 118–127. [Google Scholar]
- Dötterl, S.; Wolfe, L.M.; Jürgens, A. Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 2005, 66, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Rusanov, K.; Kovacheva, N. Traditional Rosa damascena flower harvesting practices evaluated through GC/MS metabolite profiling of flower volatiles. Food Chem. 2011, 129, 1851–1859. [Google Scholar] [CrossRef]
- Li, Y.; Ma, H.; Wan, Y.; Li, T.; Liu, X.; Sun, Z.; Li, Z. Volatile organic compounds emissions from Luculia pinceana flower and its changes at different stages of flower development. Molecules 2016, 21, 531. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Mai, R.Z.; Zou, J.J.; Zhang, H.Y.; Zeng, X.L.; Zheng, R.R.; Wang, C. Analysis of aroma-active compounds in three sweet osmanthus (Osmanthus fragrans) cultivars by GC-olfactometry and GC-MS. J. Zhejiang Univ. Sci. B 2014, 15, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrezméndez, N.; Vallejocordoba, B.; Gonzálezcórdova, A.F.; Nevárezmoorillón, G.V.; Riverachavira, B. Evaluation of aroma generation of Lactococcus lactis with an electronic nose and sensory analysis. J. Dairy Sci. 2008, 91, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, S.; Buratti, S.; Spinardi, A.; Mannino, S.; Mignani, I. Electronic nose as a non-destructive tool to characterise peach cultivars and to monitor their ripening stage during shelf-life. Postharvest Biol. Technol. 2008, 47, 181–188. [Google Scholar] [CrossRef]
- Plotto, A.; Ducamp, M.N.; Lebrun, M.; Goodner, K.; Baldwin, E. Discrimination of mango fruit maturity by volatiles using the electronic nose and gas chromatography. Postharvest Biol. Technol. 2008, 48, 122–131. [Google Scholar] [CrossRef]
- Natale, C.D.; Olafsdottir, G.; Einarsson, S.; Martinelli, E.; Paolesse, R.; D’Amico, A. Comparison and integration of different electronic noses for freshness evaluation of cod-fish fillets. Sens. Actuators B 2001, 77, 572–578. [Google Scholar] [CrossRef]
- Olafsdottir, G.; Chanie, E.; Westad, F.; Jonsdottir, R.; Thalmann, C.R.; Bazzo, S.; Haugen, J.E. Prediction of microbial and sensory quality of cold smoked Atlantic salmon (Salmo salar) by electronic nose. J. Food Sci. 2005, 70, S563–S574. [Google Scholar] [CrossRef]
- Lozano, J.; Fernández, M.J.; Fontecha, J.L.; Aleixandre, M.; Santos, J.P.; Sayago, I.; Arroyo, T.; Cabellos, J.M.; Gutiérrez, F.J.; Horrillo, M.C. Wine classification with a zinc oxide saw sensor array. Sens. Actuators B 2006, 120, 166–171. [Google Scholar] [CrossRef]
- Aleixandre, M.; Lozano, J.; Gutiérrez, J.; Sayago, I.; Fernández, M.J.; Horrillo, M.C. Portable e-nose to classify different kinds of wine. Sens. Actuators B 2008, 131, 71–76. [Google Scholar] [CrossRef]
- Bult, J.H.; Schifferstein, H.N.; Roozen, J.P.; Boronat, E.D.; Voragen, A.G.; Kroeze, J.H. Sensory evaluation of character impact components in an apple model mixture. Chem. Sens. 2002, 27, 485–494. [Google Scholar] [CrossRef]
- Khan, R.M.; Luk, C.H.; Flinker, A.; Aggarwal, A.; Lapid, H.; Haddad, R.; Sobel, N. Predicting odor pleasantness from odorant structure: Pleasantness as a reflection of the physical world. J. Neurosci. 2007, 27, 10015–10023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Huang, Y.; Zhang, Q.; Liu, X.; Li, F.; Chen, K. Fragrance discrimination of Chinese cymbidium, species and cultivars using an electronic nose. Sci. Hortic. A 2014, 172, 271–277. [Google Scholar] [CrossRef]
- Fujioka, K.; Shirasu, M.; Manome, Y.; Ito, N.; Kakishima, S.; Minami, T.; Tominaga, T.; Shimozono, F.; Iwamoto, T.; Ikeda, K.; et al. Objective display and discrimination of floral odors from Amorphophallus titanum, bloomed on different dates and at different locations, using an electronic nose. Sensors 2012, 12, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Ray, H.; Bhattacharyya, N.; Ghosh, A.; Tudu, B.; Bandyopadhyay, R.; Ghosh, A.; Biswas, S.P.; Majumdar, S. Fragrance profiling of Jasminum sambac Ait. flowers using electronic nose. IEEE Sens. J. 2017, 17, 160–168. [Google Scholar] [CrossRef]
- Su, Y.K.; An, H.R.; Park, P.M.; Yun, S.B.; Kwon, O.K.; Park, S.Y.; Park, P.H. Analysis of floral scent patterns in flowering stages and floral organs of Maxillaria using an electronic nose. Flower Res. J. 2016, 24, 171–180. [Google Scholar] [CrossRef]
- Morinaka, Y.; Handa, T.; Takeuchi, H.; Ayabe, S.; Saito, S. Validity of the sensory evaluation scales for fresh flower scent. J. Jpn. Soc. Hortic. 2008, 70, 636–649. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, J.; Gao, L. Qualification and quantisation of processed strawberry juice based on electronic nose and tongue. Food Sci. Technol. 2015, 60, 115–123. [Google Scholar] [CrossRef]
- Gómez, A.H.; Wang, J.; Hu, G.; Pereira, A.G. Electronic nose technique potential monitoring mandarin maturity. Sens. Actuators B 2006, 113, 347–353. [Google Scholar] [CrossRef]
- Chen, Y.; Pawliszyn, J. Solid-phase microextraction field sampler. Anal. Chem. 2004, 76, 6823–6828. [Google Scholar] [CrossRef] [PubMed]
- Van Gemert, L.J. Odour Thresholds: Compilations of Odour Threshold Values in Air, Water and Other Media, 3rd ed.; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2003. [Google Scholar]
- Aaby, K.; Haffner, K.; Skrede, G. Aroma quality of Gravenstein apples influenced by regular and controlled atmosphere storage. Food Sci. Technol. 2002, 35, 254–259. [Google Scholar] [CrossRef]
- Larsen, M.; Poll, L. Odour thresholds of some important aroma compounds in strawberries Geruchsschwellen einiger wichtiger Aromastoffe der Erdbeeren. Zeitschrift für Lebensmittel-Untersuchung und Forschung 1992, 195, 120–123. [Google Scholar] [CrossRef]
- Pino, J.A.; Quijano, C.E. Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Food Sci. Technol. 2012, 32, 76–83. [Google Scholar] [CrossRef]
- Devos, M.; Patte, F.; Rouault, J.; Laffort, P.; Van Gemert, L.J. Standardized Human Olfactory Thresholds; IRL Press at Oxford Press: Oxford, UK, 1990. [Google Scholar]
- Acree, T.E.; Teranishi, R. Flavor Science: Sensible Principles and Techniques; American Chemical Society: Washington, DC, USA, 1993; pp. 259–286. [Google Scholar]
- Pyysalo, T.; Suihko, M.; Honkanen, E. Odour thresholds of the major volatiles identified in cloudberry (Rubus chamaemorus L.) and arctic bramble (Rubus arcticus L.). Lebensm. Wiss. Technol. 1977, 10, 36–39. [Google Scholar]
- Buttery, R.G. Quantitative and sensory aspects of flavor of tomato and other vegertables and fruits. In Flavor Science: Sensible Principles and Techniques; American Chemical Society: Washington, DC, USA, 1993; pp. 259–286. [Google Scholar]
- Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W. The volatile constituents in the peel and pulp of a green Thai mango, Khieo Sawoei cultivar (Mangifera indica L.). Food Sci. Technol. Res. 2001, 7, 72–77. [Google Scholar] [CrossRef]
- Buttery, R.G.; Turnbaugh, J.G.; Ling, L.C. Contribution of volatiles to rice aroma. J. Agric. Food Chem. 1988, 36, 1006–1009. [Google Scholar] [CrossRef]
- Fazzalari, F.A. Compilation of Odor and Taste Threshold Data; American Society for Testing and Materials: Philadelphia, PA, USA, 1978. [Google Scholar]
- Yuan, G.; Ren, J.; Ouyang, X.; Wang, L.; Wang, M.; Shen, X.; Zhu, B. Effect of raw material, pressing and glycosidase on the volatile compound composition of wine made from goji berries. Molecules 2016, 21, 1324. [Google Scholar] [CrossRef] [PubMed]
- Buttery, R.G.; Seifert, R.M.; Guadagni, D.G.; Ling, L.C. Characterization of additional volatile components of tomato. J. Agric. Food Chem. 1971, 19, 524–529. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Keller, A.; Gerkin, R.C.; Guan, Y.; Dhurandhar, A.; Turu, G.; Szalai, B.; Vens, C. Predicting human olfactory perception from chemical features of odor molecules. Science 2017, 361, eaal2014. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.; Carmel, L.; Sobel, N.; Harel, D. Predicting the receptive range of olfactory receptors. PLoS Comput. Boil. 2008, 4, e18. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.; Medhanie, A.; Roth, Y.; Harel, D.; Sobel, N. Predicting odor pleasantness with an electronic nose. PLoS Comput. Biol. 2010, 6, e1000740. [Google Scholar] [CrossRef] [PubMed]
- Burl, M.C.; Doleman, B.J.; Schaffer, A.; Lewis, N.S. Assessing the ability to predict human percepts of odor quality from the detector responses of a conducting polymer composite-based electronic nose. Sens. Actuators B 2001, 72, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Bicchi, C.; Joulain, D. Review headspace-gas chromatographic analysis of medicinal and aromatic plants and flowers. Flavour Fragr. J. 1990, 5, 131–145. [Google Scholar] [CrossRef]
- Baraldi, R.; Rapparini, F.; Rossi, F.; Latella, A.; Ciccioli, P. Volatile organic compound emissions from flowers of the most occuring and economically important species of fruit trees. Phys. Chem. Earth B Hydrol. Ocean. Atmos. 1999, 24, 729–732. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, R.; Huang, C.X.; Mao, Z.Q.; Guo, L.; Shen, X. Taxonomic analysis of volatiles emitted by ornamental crabapple flowers. Acta Ecol. Sin. 2014, 34, 213–218. [Google Scholar] [CrossRef]
- Omata, A.; Yomogida, K.; Nakamura, S.; Hashimoto, S.; Koba, S.; Furukawa, K.; Noro, S. Volatile components of apple flowers. Flavour Fragr. J. 1990, 5, 19–22. [Google Scholar] [CrossRef]
- Li, W. HS-SPME-GC-MS analysis of volatile constituents from the flowers and leaves of Malus baccata (Linn.) Borkh. Nat. Prod. Res. Dev. 2012, 24, 490–493. [Google Scholar]
Sensor No. | Sensor Name | Sensitive Components | Reference, mL·m−3 (ppm) |
---|---|---|---|
1 | W1C | Aromatic compounds | Toluene, 10 |
2 | W5C | Broad-range sensitivity, reacts with nitrogen oxides, very sensitive with negative signal | NO2, 1 |
3 | W3C | Ammonia, used as a sensor for aromatic compounds | Benzene, 10 |
4 | W6S | Mainly hydrogen, selectively (breath gases) | H2, 100 |
5 | W5S | Alkenes, aromatic compounds, less polar compounds | Propane, 1 |
6 | W1S | Sensitive to methane, broad range, similar to No. 8 | CH3, 100 |
7 | W1W | Reacts with sulfur compounds, sensitive to many terpenes and sulfur organic compounds, which are important for smell, limonene and pyridine | H2S, 1 |
8 | W2S | Detects alcohols, partially aromatic compounds, broad range | CO, 100 |
9 | W2W | Aromatic compounds, sulfur organic compounds | H2S, 1 |
10 | W3S | Reacts at high concentrations, sometime very selective (methane) | CH3, 10 |
Peak | RT | Compound Name | Published ODT/ppm | LRI(calc) | LRI(lit) | Relative Content/% | |||
---|---|---|---|---|---|---|---|---|---|
Aroma Intensity: Strong → Faint | |||||||||
M. ‘Brandywine’ | M. ‘Vans Eseltine’ | M. sylvestris | M. ‘Hillieri’ | ||||||
Aliphathics | |||||||||
1 | 9.3 | Methylheptenone | 260 [24] | 881 | 964 | 2.25 ± 0.18Aa | -- | -- | 1.00 ± 0.26Aa |
2 | 9.69 | Butyl butanoate | 0.1 [25] | 906 | -- | 0.39 ± 0.08 | -- | ||
3 | 10.12 | (Z)-3-Hexenyl acetate | 0.0121 [24] | 933 | 1016 | -- | -- | 0.48 ± 0.10 | -- |
4 | 11 | (E)-2-Decenal | 0.15–5.5 [24] | 944 | 1039 | -- | 0.56 ± 0.07 | -- | -- |
5 | 17.81 | (Z)-3-Hexenyl Butyrate | 6.8 [26] | 1044 | 1273 | 0.97 ± 0.18Aa | -- | 1.17 ± 0.17Aa | -- |
6 | 18.41 | Dodecane | 0.11 [1] | 1148 | 1270 | 0.46 ± 0.10Bb | 1.18 ± 0.19Aa | 0.48 ± 0.16Bb | 0.60 ± 0.10Bb |
7 | 19.81 | (Z)-3-Hexenyl-α-methylbutyrate | 0.004 [27] | 1121 | 1203 | 0.4 ± 0.11Bb | -- | 1.04 ± 0.20Aa | 0.54 ± 0.06Bb |
8 | 22.29 | 1-Methylnaphthalene | 1.4 [24] | 1157 | * | 0.86 ± 0.09 | |||
9 | 22.82 | Tridecane | 2.14 [28] | 1251 | 1293 | -- | 0.41 ± 0.08Aa | -- | 0.52 ± 0.02Aa |
10 | 25.86 | Texanol | na | 1248 | * | 0.94 ± 0.17Aa | -- | 0.41 ± 0.08Cc | 0.69 ± 0.10Bb |
11 | 26.24 | (Z)-3-hexenyl hexanoate | 0.0052 [27] | 1254 | 1233 | 0.88 ± 0.13 | -- | -- | -- |
12 | 30.92 | 2-Tridecanone | 0.5 [24] | 1344 | 1496 | 3.37 ± 0.96 | -- | -- | -- |
13 | 37.88 | 2-Pentadecanone | na | 1518 | 1693 | 1.06 ± 0.26 | -- | -- | -- |
14 | 41.21 | Methyl hexadecanoate | 4000 [24] | 1702 | 1909 | 0.22 ± 0.06 | -- | -- | -- |
Benzenoids | |||||||||
15 | 6.09 | Styrene | 0.12 [23] | 676 | 679 | -- | 1.75 ± 0.11Bb | 3.33 ± 0.6Aa | 1.65 ± 0.04Bb |
16 | 8.35 | Benzaldehyde | 0.5 [23] | 748 | 782 | -- | 1.15 ± 0.18 | -- | -- |
17 | 10.55 | 4-Methylanisole | 0.0029 [24] | 961 | 1001 | 2.18 ± 0.53 | -- | -- | -- |
18 | 11.14 | Benzyl alcohol | 5.5 [24] | 925 | 1030 | -- | 10.45 ± 0.35Cc | 13.52 ± 1.45Bb | 32.57 ± 0.79Aa |
19 | 13.68 | Methyl benzoate | 0.028 [24] | 1160 | 1107 | 0.51 ± 0.24 | -- | -- | -- |
20 | 14.48 | 2-Phenylethanol | 0.045 [24] | 1211 | 1129 | 0.54 ± 0.10 | -- | -- | -- |
21 | 15.59 | Benzyl nitrile | 1–10 [24] | 1282 | 1098 | 1.87 ± 0.33Aa | 0.36 ± 0.06Bb | -- | -- |
22 | 16.78 | Benzyl acetate | <0.001 [27] | 1048 | 1107 | -- | -- | 1.88 ± 0.43 | -- |
23 | 22.62 | (2-Nitroethyl)benzene | 0.002 [29] | 1729 | * | 0.89 ± 0.08 | -- | -- | -- |
24 | 22.95 | Cinnamyl alcohol | 2.8 [30] | 1215 | 1304 | -- | -- | -- | 0.97 ± 0.18 |
25 | 25.56 | 4-Methoxyphenethyl alcohol | na | 1286 | 1250 | 3.35 ± 0.20 | -- | -- | |
26 | 31.29 | Cuparene | na | 1446 | 1502 | -- | -- | -- | 0.48 ± 0.11 |
27 | 31.62 | 2,6-di-tert-butyl-4-methylphenol | 1 [31] | 1450 | * | -- | -- | 0.53 ± 0.15Bb | 1.17 ± 0.15Aa |
28 | 39.11 | Benzyl benzoate | 1–10 [24] | 1461 | 1789 | -- | 0.3 ± 0.05 | -- | -- |
Monoterpenes | |||||||||
29 | 5.16 | leaf alcohol | 0.01–0.2 [24] | 465 | 552 | 1.25 ± 0.19Bb | 1.86 ± 0.08Aa | 0.68 ± 0.15Cc | |
30 | 7.46 | α-Pinene | 0.12–1.01 [24] | 892 | 943 | -- | -- | 2.22 ± 0.67Aa | 1.23 ± 0.11Bb |
31 | 10.19 | α-Ocimene | na | 932 | 1044 | -- | -- | 0.76 ± 0.10 | -- |
32 | 10.96 | Limonene | 0.5–0.7 [24] | 943 | 994 | -- | -- | 0.44 ± 0.14 | -- |
33 | 11.81 | (E)-α-Ocimene | 0.034 [32] | 956 | 1058 | -- | 0.48 ± 0.05 | -- | -- |
34 | 13.94 | Linalool | 0.0015 [24] | 987 | 1098 | 2.3 ± 0.32Cc | 19.94 ± 0.98Aa | 3.04 ± 0.64Bb | 1.49 ± 0.10Dd |
35 | 19.38 | Limonene oxide | 0.01 [33] | 1068 | 1057 | -- | 0.25 ± 0.08 | -- | -- |
36 | 22.15 | Bornyl acetate | 0.075 [34] | 1199 | 1270 | -- | -- | 0.38 ± 0.11 | -- |
Sequiterpenes | |||||||||
37 | 26.71 | β-Elemen | na | 1396 | 1336 | -- | -- | 3.26 ± 0.06Aa | 2.73 ± 0.43Aa |
38 | 27.49 | α-Cedrene | 0.00003–0.00213 | 1404 | 1411 | 1.76 ± 0.13Bb | 0.68 ± 0.07Cc | 19.51 ± 0.65Aa | 19.13 ± 0.7Aa |
39 | 27.82 | β-Cedrene | 0.00003–0.00213 | 1408 | 1418 | 0.69 ± 0.10Cc | 0.34 ± 0.06Dd | 7.99 ± 0.65Aa | 6.61 ± 0.52Bb |
40 | 28.26 | (Z)-Thujopsene | na | 1413 | 1434 | -- | -- | 1.52 ± 0.15Aa | 1.37 ± 0.28Aa |
41 | 29.75 | (+)-α-Longipinene | na | 1429 | 1352 | -- | -- | 0.47 ± 0.12Aa | 0.44 ± 0.17Aa |
42 | 30.16 | ç-Muurolene | na | 1434 | 1476 | -- | -- | 0.55 ± 0.14Ab | 0.88 ± 0.10Aa |
43 | 30.32 | α-Muurolene | na | 1435 | 1491 | -- | -- | 0.41 ± 0.10Ab | 0.87 ± 0.20Aa |
44 | 30.41 | Curcumene | na | 1436 | 1346 | -- | -- | -- | 0.31 ± 0.10 |
45 | 30.53 | β-Selinene | na | 1438 | 1521 | -- | -- | 0.47 ± 0.12Aa | 0.69 ± 0.11Aa |
46 | 30.9 | γ-Gurjunene | na | 1442 | 1409 | -- | 0.43 ± 0.14Aa | 0.59 ± 0.07Aa | |
47 | 31.47 | α-Farnesene | 2 [24] | 1448 | 1505 | -- | 0.25 ± 0.08Cc | 0.60 ± 0.08Bb | 1.19 ± 0.13Aa |
48 | 32.05 | d-Cadinene | na | 1454 | 1467 | -- | -- | 0.52 ± 0.13Aa | 0.79 ± 0.13Aa |
49 | 35 | Cedrol | 0.00013–0.001 [35] | 1487 | 1597 | -- | -- | 1.68 ± 0.32Bb | 4.24 ± 0.10Aa |
Irregular terpenes | |||||||||
50 | 3.09 | Methyl isobutyl ketone | 0.1–5 [24] | * | * | -- | 0.73 ± 0.13 | -- | -- |
51 | 14.75 | (E)-4,8-dimethyl-1,3,7-nonatriene | na | 1049 | * | -- | 0.37 ± 0.08Bb | -- | 1.00 ± 0.16Aa |
52 | 28.15 | α-Ionone | 0.001–0.006 [24] | 1312 | 1411 | 1.30 ± 0.31 | -- | -- | -- |
53 | 28.44 | Geranylacetone | 0.06 [36] | 1316 | 1431 | 2.43 ± 0.52Aa | 0.36 ± 0.08Bb | 0.38 ± 0.08Bb | 0.31 ± 0.03Bb |
54 | 30.53 | trans-á-Ionone | 0.001–0.006 [24] | 1339 | 1466 | 0.38 ± 0.11 | -- | -- | -- |
N-containing compounds | |||||||||
55 | 5.5 | N-Benzylaniline | na | 1054 | * | 0.78 ± 0.16 | -- | -- | -- |
56 | 22.41 | Indole | 0.5 [24] | 1416 | 1307 | -- | 1.15 ± 0.19 | -- | -- |
57 | 27.08 | 4-Pyrrolidinopyridine | na | 1327 | * | 5.51 ± 0.54Bb | 4.26 ± 0.4Cc | 13.19 ± 0.49Aa | 2.6 ± 0.43Dd |
58 | 27.2 | 5-methyl-1,3-dihydro-2H-benzimidazol-2-one | na | 2021 | * | 23.76 ± 1.37Aa | 16.41 ± 0.5Bb | -- | -- |
S-containing compounds | |||||||||
59 | 40.47 | Cocarboxylase | na | 1445 | * | 0.27 ± 0.07Aa | 0.44 ± 0.02Aa | 0.16 ± 0.06Aa | 0.22 ± 0.10Aa |
60 | 40.72 | L-Methionine | 750 [24] | * | * | 0.44 ± 0.14 | -- | -- | -- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Zhang, W.; Zhou, T.; Zhang, D.; Zhang, D.; Zhang, L.; Wang, G.; Cao, F. Discrimination of Malus Taxa with Different Scent Intensities Using Electronic Nose and Gas Chromatography–Mass Spectrometry. Sensors 2018, 18, 3429. https://doi.org/10.3390/s18103429
Fan J, Zhang W, Zhou T, Zhang D, Zhang D, Zhang L, Wang G, Cao F. Discrimination of Malus Taxa with Different Scent Intensities Using Electronic Nose and Gas Chromatography–Mass Spectrometry. Sensors. 2018; 18(10):3429. https://doi.org/10.3390/s18103429
Chicago/Turabian StyleFan, Junjun, Wangxiang Zhang, Ting Zhou, Dandan Zhang, Donglin Zhang, Long Zhang, Guibin Wang, and Fuliang Cao. 2018. "Discrimination of Malus Taxa with Different Scent Intensities Using Electronic Nose and Gas Chromatography–Mass Spectrometry" Sensors 18, no. 10: 3429. https://doi.org/10.3390/s18103429
APA StyleFan, J., Zhang, W., Zhou, T., Zhang, D., Zhang, D., Zhang, L., Wang, G., & Cao, F. (2018). Discrimination of Malus Taxa with Different Scent Intensities Using Electronic Nose and Gas Chromatography–Mass Spectrometry. Sensors, 18(10), 3429. https://doi.org/10.3390/s18103429