Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Motion Estimation
- i
- Compute the polar coordinates of the image samples.
- ii
- For every angle α, compute the average value hm(α) of the Fourier coefficients for which and , where ρ is the image radius or half the image size.
- iii
- The angles are expressed in degrees and hm(α) is evaluated every 0.1 degrees. A typical value used for is 0.6.
- iv
- Find the maximum of the correlation between h1(α) and hm(α) between −30 and 30 degrees, which is the estimated rotation angle .
- v
- Rotate the low resolution windowed image by to cancel the rotation.
- (a)
- Compute the phase difference between low resolution windowed image and the reference image.A shift of the image parallel to the image plane can be expressed in the Fourier domain as a linear phase shift:It is well known that the shift parameters can thus be computed as the slope of the phase difference .
- (b)
- For all frequencies , write the linear equation describing a plane through the computed phase difference with unknown slopes .
- (c)
- Find the shift parameters as the least-squares solution of the equations.
2.2.2. Robust Super-Resolution
2.2.3. Super-Resolution Image of ZY-3 TLC
3. Results and Discussion
3.1. Results
3.2. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tsai, R.Y.; Huang, T.S. Multiframe image restoration and registration. In Advances in Computer Vision and Image Processing; JAI Press: Greenwich, CT, USA, 1984; Volume 1, pp. 317–339. [Google Scholar]
- He, Y.; Yap, K.H.; Chen, L.; Chau, L.P. A soft MAP framework for blind super-resolution image reconstruction. Image Vis. Comput. 2009, 27, 364–373. [Google Scholar] [CrossRef]
- Borman, S.; Stevenson, R.L. Spatial Resolution Enhancement of Low-Resolution Image Sequences—A Comprehensive Review with Directions for Future Research; Technical Report; Laboratory for Image and Signal Analysis (LISA), University of Notre Dame: Notre Dame, IN, USA, 1998. [Google Scholar]
- Park, S.C.; Park, M.K.; Kang, M.G. Super-resolution image reconstruction: A technical overview. IEEE Signal Process. Mag. 2003, 20, 21–36. [Google Scholar] [CrossRef]
- Yue, L.; Shen, H.; Li, J.; Yuan, Q.; Zhang, H.; Zhang, L. Image super-resolution: The techniques, applications, and future. Signal Process. 2016, 128, 389–408. [Google Scholar] [CrossRef]
- Fernandez-beltran, R.; Latorrecarmona, P.; Pla, F. Single-frame super-resolution in remote sensing: A practical overview. Int. J. Remote Sens. 2017, 38, 314–354. [Google Scholar] [CrossRef]
- Simoes, M.; Bioucas-Dias, J.; Almeida, L.B.; Chanussot, J. Convex Formulation for Hyperspectral Image Superresolution via Subspace-Based Regularization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3373–3388. [Google Scholar] [CrossRef]
- Tan, B.; Xing, S.; Xu, Q.; Li, J.S. A Research on SPOT5 Supermode Image Processing. Remote Sens. Technol. Appl. 2004, 19, 249–252. [Google Scholar]
- Kasturiwala, S.B.; Siddharth, A. Adaptive Image Superresolution for Agrobased Application. In Proceedings of the 2015 International Conference on Industrial Instrumentation and Control (ICIC), Pune, India, 28–30 May 2015; pp. 650–655. [Google Scholar]
- Duveiller, G.; Defourny, P.; Gerard, B. A Method to Determine the Appropriate Spatial Resolution Required for Monitoring Crop Growth in a Given Agricultural Landscape. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. 562–565. [Google Scholar]
- Ling, F.; Foody, G.M.; Ge, Y.; Li, X.; Du, Y. An Iterative Interpolation Deconvolution Algorithm for Superresolution Land Cover Mapping. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7210–7222. [Google Scholar] [CrossRef]
- Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef]
- Irani, M.; Rousso, B.; Peleg, S. Computing occluding and transparent motions. Int. J. Comput. Vis. 1994, 12, 5–16. [Google Scholar] [CrossRef]
- Gluckman, J. Gradient field distributions for the registration of images. In Proceedings of the IEEE International Conference on Image Processing (ICIP 2003), Barcelona, Spain, 14–17 September 2003; pp. 691–694. [Google Scholar]
- Vandewalle, P.; Süsstrunk, S.; Vetterli, M. A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP J. Adv. Signal Process. 2006, 2006, 233. [Google Scholar] [CrossRef]
- Vandewalle, P.; Süsstrunk, S.E.; Vetterli, M. Super-resolution images reconstructed from aliased images. In Proceedings of the SPIE/IS&T Visual Communications and Image Processing Conference, Lugano, Switzerland, 16 June 2003; pp. 1398–1405. [Google Scholar]
- Kim, S.P.; Su, W.Y. Subpixel accuracy image registration by spectrum cancellation. Proceeding of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-93), Minneapolis, MN, USA, 27–30 April 1993; pp. 153–156. [Google Scholar]
- Stone, H.S.; Orchard, M.T.; Ee-Chien, C.; Martucci, S.A. A fast direct Fourier-based algorithm for subpixel registration of images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2235–2243. [Google Scholar] [CrossRef]
- Irani, M.; Peleg, S. Improving resolution by image registration. CVGIP Graph Model. Image Process 1991, 53, 231–239. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, B. A New Look at Image Fusion Methods from a Bayesian Perspective. Remote Sens. 2015, 7, 6828–6861. [Google Scholar] [CrossRef]
- Elad, M.; Feuer, A. Restoration of single super-resolution image from several blurred, noisy and down-sampled measured images. IEEE Trans. Image Process. 1997, 6, 1646–1658. [Google Scholar] [CrossRef] [PubMed]
- Elad, M.; Hel-Or, Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Trans. Image Process. 2001, 10, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.C.; Boult, T.E. Efficient image warping and super-resolution. Image Vis. Comput. 2000, 18, 761–771. [Google Scholar] [CrossRef]
- Zomet, A.; Rav-Acha, A.; Peleg, S. Robust super resolution. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December, 2001; pp. 645–650. [Google Scholar]
- Satellite Surveying and Mapping Application Center, NASG. Available online: http://sjfw.sasmac.cn/en.html (accessed on 5 May 2017).
- Satellite Surveying and Mapping Application Center, NASG. Information. Available online: http://sjfw.sasmac.cn/en/ZY-3.html (accessed on 4 March 2016).
- Bloomfield, P. Fourier Analysis of Time Series: An Introduction; Wiley-Interscience: New York, NY, USA, 2000. [Google Scholar]
- MATLAB® 8 . R2012b; MathWorks: Natick, MA, USA, 2012.
- Leachtenauer, C.J.; Malila, W.; Irvine, J.; Colburn, L.; Salvaggio, N. General image-quality equation: GIQE. Appl. Opt. 1997, 36, 8322–8328. [Google Scholar] [CrossRef] [PubMed]
Mean | Standard Deviation | Entropy | Variance | Contrast | Second Moment | Homogeneity | Relative Edge Response | |
---|---|---|---|---|---|---|---|---|
FWD | 112.90 | 36.79 | 7.09 | 7.83 | 17.22 | 0.22 | 0.59 | 0.17 |
BWD | 130.34 | 42.85 | 6.98 | 8.15 | 18.00 | 0.27 | 0.54 | 0.18 |
NAD | 120.51 | 38.74 | 7.11 | 11.69 | 27.72 | 0.31 | 0.49 | 0.20 |
F + N | 122.45 | 39.71 | 7.09 | 9.09 | 28.19 | 0.24 | 0.48 | 0.18 |
B + N | 129.12 | 43.37 | 7.13 | 5.08 | 11.77 | 0.31 | 0.62 | 0.20 |
F + B + N | 131.12 | 47.67 | 7.14 | 13.32 | 35.23 | 0.32 | 0.44 | 0.22 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wang, W.; Luo, H.; Ying, S. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images. Sensors 2017, 17, 1062. https://doi.org/10.3390/s17051062
Li L, Wang W, Luo H, Ying S. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images. Sensors. 2017; 17(5):1062. https://doi.org/10.3390/s17051062
Chicago/Turabian StyleLi, Lin, Wei Wang, Heng Luo, and Shen Ying. 2017. "Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images" Sensors 17, no. 5: 1062. https://doi.org/10.3390/s17051062
APA StyleLi, L., Wang, W., Luo, H., & Ying, S. (2017). Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images. Sensors, 17(5), 1062. https://doi.org/10.3390/s17051062