Highly Sensitive Sputtered ZnO:Ga Thin Films Integrated by a Simple Stencil Mask Process on Microsensor Platforms for Sub-ppm Acetaldehyde Detection
Abstract
:1. Introduction
2. Experimental
3. Preparation of Microheaters
4. Integration of N-type ZnO:Ga by the Shadow Mask Process
4.1. Characterization of the ZnO:Ga Layer
4.2. Description of the Integration Process via Stencil Mask
5. Sensing Tests
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Demarne, V.; Grisel, A. An integrated low-power thin-film CO gas sensor on silicon. Sens. Actuators 1988, 13, 301–313. [Google Scholar] [CrossRef]
- Courbat, J.; Canonica, M.; Teyssieux, D.; Briand, D.; de Rooijet, N.F. Design and fabrication of micro-hotplates made on a polyimide foil: Electrothermal simulation and characterization to achieve power consumption in the low mW range. J. Micromech. Microeng. 2010, 21, 015014. [Google Scholar] [CrossRef]
- Vaihinger, S.; Göpel, W. Chapter 6: Multi-Component Analysis in Chemical Sensing. In Sensors Set: A Comprehensive Survey; Göpel, W., Hesse, J., Zemel, J.N., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1995. [Google Scholar]
- Sofian, M.K.; Oussama, M.E.; Imad, A.A.; Marsha, C.K. Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 2009, 9, 8158–8196. [Google Scholar]
- Drobek, M.; Kim, J.-H.; Bechelany, M.; Vallicari, C.; Julbe, A.; Kim, S.S. MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity. ACS Appl. Mater. Interfaces 2016, 8, 8323–8328. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed]
- Briand, D.; Courbat, J. Chapter 6: Micromachined semiconductor gas sensors. In Semiconductor Gas Sensors; Jaaniso, R., Tan, O.K., Eds.; Woodhead Publishing: Sawston, Cambridge, UK, 2013; pp. 220–260. [Google Scholar]
- Sears, W.M.; Colbow, K.; Consadori, F. General characteristics of thermally cycled tin oxide gas Sensors. Semicond. Sci. Technol. 1989, 4, 351–359. [Google Scholar] [CrossRef]
- Llobet, E.; Brezmes, J.; Ionescu, R.; Vilanova, X.; Al-Khalifa, S.; Gardner, J.W.; Bârsan, N.; Correig, X. Wavelet transform and fuzzy ARTMAP-based pattern recognition for fast gas identification using a micro-hotplate gas sensor. Sens. Actuators B Chem. 2002, 83, 238–244. [Google Scholar] [CrossRef]
- Parret, F.; Ménini, Ph.; Martinez, A.; Soulantica, K.; Maisonnat, A.; Chaudret, B. Improvement of Micromachined SnO2 Gas Sensors Selectivity By Optimised Dynamic Temperature Operating Mode. Sens. Actuators B Chem. 2006, 118, 276–282. [Google Scholar] [CrossRef]
- Faglia, G.; Comini, E.; Cristalli, A.; Sberveglieri, G.; Dori, L. Very low power consumption micromachined CO sensors. Sens. Actuators B Chem. 1999, 55, 140–146. [Google Scholar] [CrossRef]
- Dufour, N.; Chapelle, A.; Talhi, C.; Blanc, F.; Franc, B.; Menini, P.; Aguir, K. Tuning the Bias Sensing Layer: A New Way to Greatly Improve Metal-Oxide Gas Sensors Selectivity. In Proceedings of the International Conference on Sensing Technology (ICST), Wellington, New Zealand, 3–5 December 2013. [Google Scholar]
- Fong, C.-F.; Dai, C.-L.; Wu, C.-C. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique. Sensors 2015, 15, 27047–27059. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.J.; Hockey, B.; Montgomery, C.B.; Semancik, S. Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 2005, 21, 7937–7944. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.-Z.; Dai, C.-L.; Yang, M.-Z. Micro Ethanol Sensors with a Heater Fabricated Using the Commercial 0.18 μm CMOS Process. Sensors 2013, 13, 12760–12770. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.-Z.; Dai, C.-L. Ethanol Microsensors with a Readout Circuit Manufactured Using the CMOS-MEMS Technique. Sensors 2015, 15, 1623–1634. [Google Scholar] [CrossRef] [PubMed]
- Behera, B.; Chandra, S. An innovative gas sensor incorporating ZnO–CuO nanoflakes in planar MEMS technology. Sens. Actuators B Chem. 2016, 229, 414–424. [Google Scholar] [CrossRef]
- Stankova, M.; Ivanov, P.; Llobet, E.; Brezmes, J.; Vilanova, X.; Gràcia, I.; Cané, C.; Hubalek, J.; Malysz, K.; Correig, X. Sputtered and screen-printed metal oxide-based integrated micro-sensor arrays for the quantitative analysis of gas mixtures. Sens. Actuators B Chem. 2004, 103, 23–30. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Chiang, C.-M.; Wang, Y.-H.; Ma, R.-H. A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sens. Actuators B Chem. 2007, 122, 503–510. [Google Scholar] [CrossRef]
- Stankova, M.; Vilanova, X.; Calderer, J.; Llobet, E.; Ivanov, P.; Gràcia, I.; Cané, C.; Correig, X. Detection of SO2 and H2S in CO2 stream by means of WO3-based micro-hotplate sensors. Sens. Actuators B Chem. 2004, 102, 219–225. [Google Scholar] [CrossRef]
- Tang, Z.; Fung, S.K.H.; Wong, D.T.W.; Chan, P.C.H.; Sin, J.K.O.; Cheung, P.W. An integrated gas sensor based on tin oxide thin-film and improved micro-hotplate. Sens. Actuators B Chem. 1998, 46, 174–179. [Google Scholar] [CrossRef]
- Sheng, L.Y.; Tang, Z.; Wu, J.; Chan, P.C.H.; Sin, J.K.O. A low-power CMOS compatible integrated gas sensor using maskless tin oxide sputtering. Sens. Actuators B Chem. 1998, 49, 81–87. [Google Scholar] [CrossRef]
- Takács, M.; Dücső, C.; Pap, A.E. Fine-tuning of gas sensitivity by modification of nano-crystalline WO3 layer morphology. Sens. Actuators B Chem. 2015, 221, 281–289. [Google Scholar] [CrossRef]
- Zappa, D.; Briand, D.; Comini, E.; Courbat, J.; de Rooij, N.F.; Sberveglieri, G. Zinc Oxide Nanowires Deposited on Polymeric Hotplates for Low-power Gas Sensors. Procedia Eng. 2012, 47, 1137–1140. [Google Scholar] [CrossRef]
- Yang, M.Z.; Dai, C.L.; Shih, P.J.; Chen, Y.C. Cobalt oxide nanosheet humidity sensor integrated with circuit on chip. Microelectron. Eng. 2011, 88, 1742–1744. [Google Scholar] [CrossRef]
- Dai, C.L.; Chen, Y.C.; Wu, C.C.; Kuo, C.F. Cobalt oxide nanosheet and CNT micro carbon monoxide sensor integrated with readout circuit on chip. Sensors 2010, 10, 1753–1764. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wang, J. Methanol sensing micro-gas sensors of SnO2-ZnO nanofibers on Si/SiO2/Ti/Pt substrate via stepwise-heating electrospinning. J. Mater. Sci. 2015, 50, 4209–4220. [Google Scholar] [CrossRef]
- Kuhne, S.; Graf, M.; Tricoli, A.; Mayer, F.; Pratsinis, S.E.; Hierlemann, A. Wafer-level flame-spray-pyrolysis deposition of gas-sensitive layers on microsensors. J. Micromech. Microeng. 2008, 18, 035040. [Google Scholar] [CrossRef]
- Wan, Q.; Li, Q.H.; Chen, Y.J.; Wang, T.H.; He, X.L.; Li, J.P.; Lin, C.L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654–3656. [Google Scholar] [CrossRef]
- Nguyen, H.; Quy, C.T.; Hoa, N.D.; Lam, N.T.; Duy, N.V.; Quang, V.V.; Hieu, N.V. Controllable growth of ZnO nanowire grown on discrete islands of Au catalyst for realization of planar type micro gas sensors. Sens. Actuators B Chem. 2014, 193, 888–894. [Google Scholar] [CrossRef]
- Pandya, H.J.; Chandra, S.; Vyas, A.L. Integration of ZnO nanostructures with MEMS for ethanol sensor. Sens. Actuators B Chem. 2011, 161, 923–928. [Google Scholar] [CrossRef]
- Peng, K.Q.; Wang, X.; Lee, S.T. Gas sensing properties of single crystalline porous silicon nanowires. Appl. Phys. Lett. 2009, 95, 243112. [Google Scholar] [CrossRef]
- Dong, K.Y.; Choi, J.K.; Hwang, I.S.; Lee, J.W.; Kang, B.H.; Ham, D.J.; Lee, J.H.; Ju, B.K. Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater. Sens. Actuators B Chem. 2011, 157, 154–161. [Google Scholar] [CrossRef]
- Oudrhiri-Hassani, F.; Presmanes, L.; Barnabé, A.; Tailhades, P. Microstructure, porosity and roughness of RF sputtered oxide thin films: characterization and modelization. Appl. Surf. Sci. 2008, 254, 5796–5802. [Google Scholar] [CrossRef]
- Sandu, I.; Presmanes, L.; Alphonse, P.; Tailhades, P. Nanostructured cobalt manganese ferrite thin films for gas sensor application. Thin Solid Films 2006, 495, 130–133. [Google Scholar] [CrossRef]
- Chapelle, A.; El Younsi, I.; Vitale, S.; Thimont, Y.; Nelis, T.; Presmanes, L.; Barnabé, A.; Tailhades, P. Improved semiconducting CuO/CuFe2O4 nanostructured thin films for CO2 gas sensing. Sens. Actuators B Chem. 2014, 204, 407–413. [Google Scholar] [CrossRef]
- Chapelle, A.; Yaacob, M.; Pasquet, I.; Presmanes, L.; Barnabe, A.; Tailhades, P.; Du Plessis, J.; Kalantar, K. Structural and gas-sensing properties of CuO–CuxFe3−xO4 nanostructured thin films. Sens. Actuators B Chem. 2011, 153, 117–124. [Google Scholar] [CrossRef]
- Presmanes, L.; Chapelle, A.; Oudrhiri-Hassani, F.; Barnabe, A.; Tailhades, P. Synthesis and CO Gas-Sensing Properties of CuO and Spinel Ferrite Nanocomposite Thin Films. Sens. Lett. 2013, 9, 587–590. [Google Scholar] [CrossRef]
- Afaah, A.N.; Khusaimi, Z.; Rusop, M. A Review on Zinc Oxide Nanostructures: Doping and Gas Sensing. Adv. Mater. Res. 2013, 667, 329–332. [Google Scholar]
- Yang, J.; Jiang, Y.; Li, L.; Gao, M. Structural, morphological, optical and electrical properties of Ga-doped ZnO transparent conducting thin films. Appl. Surf. Sci. 2017. Available online: http://doi.org/10.1016/j.apsusc.2016.10.079 (accessed on 17 October 2016).
- Zhou, Y.; Li, C.; Huijbregts, M.A.J.; Mumtaz, M.M. Carcinogenic Air Toxics Exposure and Their Cancer-Related Health Impacts in the United States. PLoS ONE 2015, 10, e0140013. [Google Scholar] [CrossRef] [PubMed]
- Sivalingam, K.; Shankar, P.; Mani, G.K.; Rayappan, J.B.B. Solvent volume driven ZnO nanopetals thin films: Spray pyrolysis. Mater. Lett. 2014, 134, 47–50. [Google Scholar] [CrossRef]
- Rai, P.; Raj, S.; Ko, K.-J.; Park, K.-K.; Yu, Y.-T. Synthesis of flower-like ZnO microstructures for gas sensor applications. Sens. Actuators B Chem. 2013, 178, 107–112. [Google Scholar] [CrossRef]
- Giberti, A.; Carotta, M.C.; Fabbri, B.; Gherardi, S.; Guidi, V.; Malagù, C. High-sensitivity detection of acetaldehyde. Sens. Actuators B Chem. 2012, 174, 402–405. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, J.; Lu, H.; Gong, L.; Li, L.; Zheng, J.; Li, H.; Zhu, Z. High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method. Sens. Actuators B Chem. 2011, 160, 364–370. [Google Scholar] [CrossRef]
- Rai, P.; Song, H.-M.; Kim, Y.-S.; Song, M.-K.; Oh, P.-R.; Yoon, J.-M.; Yu, Y.-T. Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application. Mater. Lett. 2012, 68, 90–93. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Lim, J.-O.; Huh, J.-S.; Noh, J.-S.; Lee, W. Two-step fabrication of ZnO nanosheets for high-performance VOCs gas sensor. Curr. Appl. Phys. 2013, 13, S156–S161. [Google Scholar] [CrossRef]
- Du, J.; Yao, H.; Zhao, R.; Wang, H.; Xie, Y.; Li, J. Controllable synthesis of prism- and lamella-like ZnO and their gas sensing. Mater. Lett. 2014, 136, 427–430. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, J.; Zheng, J.; Li, L.; Zhu, Z. Shuttle-like ZnO nano/microrods: Facile synthesis, optical characterization and high formaldehyde sensing properties. Appl. Surf. Sci. 2011, 258, 711–718. [Google Scholar] [CrossRef]
- Mani, G.K.; Rayappan, J.B.B. ZnO nanoarchitectures: Ultrahigh sensitive room temperature acetaldehyde sensor. Sens. Actuators B Chem. 2016, 223, 343–351. [Google Scholar] [CrossRef]
- Xu, J.; Han, J.; Zhang, Y.; Sun, Y.; Xie, B. Studies on alcohol sensing mechanism of ZnO based gas sensors. Sens. Actuators B Chem. 2008, 132, 334–339. [Google Scholar] [CrossRef]
- Shalini, S.; Balamurugan, D. Ambient temperature operated acetaldehyde vapour detection of spray deposited cobalt doped zinc oxide thin film. J. Colloid Interface Sci. 2016, 466, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Hjiri, M.; Dhahri, R.; El Mir, L.; Bonavita, A.; Donato, N.; Leonardi, S.G.; Neri, G. CO sensing properties of Ga-doped ZnO prepared by sol–gel route. J. Alloy. Compd. 2015, 634, 187–192. [Google Scholar] [CrossRef]
- Bui, M.A.; Le Trong, H.; Presmanes, L.; Barnabé, A.; Bonningue, C.; Tailhades, P. Thin films of Co1.7Fe1.3O4 prepared by radio-frequency sputtering - First step towards their spinodal decomposition. CrystEngComm 2014, 16, 3359–3365. [Google Scholar] [CrossRef]
- Shang, C.; Thimont, Y.; Barnabe, A.; Presmanes, L.; Pasquet, I.; Tailhades, Ph. Detailed microstructure analysis of as-deposited and etched porous ZnO films. Appl. Surf. Sci. 2015, 344, 242–248. [Google Scholar] [CrossRef]
- Weber, L. XII. Ein einfacher Ausdruck für das Verhältnis der Netzdichten der Bravaisschen Baumgitter. Zeitschrift für Kristallographie-Cryst. Mater. 1923, 58, 398. [Google Scholar] [CrossRef]
- Dang, W.L.; Fu, Y.Q.; Luo, J.K.; Flewitt, A.J.; Milne, W.I. Deposition and characterization of sputtered ZnO films. Superlattices Microstruct. 2007, 42, 89–93. [Google Scholar] [CrossRef]
- Thimont, Y.; Clatot, J.; Nistor, M.; Labrugere, C.; Rougier, A. From ZnF2 to ZnO thin films using pulsed laser deposition: Optical and electrical properties. Sol. Energ. Mater. Sol. Cells 2012, 107, 136–141. [Google Scholar]
- Clatot, J.; Campet, G.; Zeinert, A.; Labrugere, C.; Nistor, M.; Rougier, A. Low temperature Si doped ZnO thin films for transparent conducting oxides. Sol. Energ. Mater. Sol. Cells 2011, 95, 2357–2362. [Google Scholar] [CrossRef]
- Thermal Expansion Coefficients at 20 °C. Available online: http://hyperphysics.phy-astr.gsu.edu/hbase/tables/thexp.html (accessed on 5 May 2017).
- Scherrer, P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. J. Nachr. Ges. Wiss. Göttingen 1918, 26, 98–100. [Google Scholar]
- Sugapriya, S.; Lakshmi, S.; Senthilkumaran, C.K. Effect on Annealing Temperature on ZnO Nanoparticles. Int. J. ChemTech Res. 2015, 8, 297–302. [Google Scholar]
- Husna, J.; Mannir Aliyu, M.; Aminul Islam, M.; Chelvanathan, P.; Radhwa Hamzah, N.; Sharafat Hossain, M.; Karim, M.R.; Amin, N. Influence of Annealing Temperature on the Properties of ZnO Thin Films Grown by Sputtering. Energy Procedia 2012, 25, 55–61. [Google Scholar] [CrossRef]
- Barnabe, A.; Lalanne, M.; Presmanes, L.; Soon, J.M.; Tailhades, Ph.; Dumas, C.; Grisolia, J.; Arbouet, A.; Paillard, V.; BenAssayag, G.; et al. Structured ZnO-based contacts deposited by non-reactive rf magnetron sputtering on ultra-thin SiO2/Si through a stencil mask. Thin Solid Films 2009, 518, 1044–1047. [Google Scholar] [CrossRef]
- Lalanne, M.; Soon, J.M.; Barnabe, A.; Presmanes, L.; Pasquet, I.; Tailhades, P. Preparation and characterization of the defect-conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency-magnetron sputtering. J. Mater. Res. 2010, 25, 2407–2414. [Google Scholar] [CrossRef]
- Necas, D.; Klapetek, P. Gwyddion software. Available online: http://www.gwyddion.net/ (accessed on 8 March 2016).
Target Material | ZnO:Ga |
---|---|
Magnetron | Yes |
Substrates | Glass and Micro-Hotplate |
Power | 50 W |
Argon pressure | 2 Pa |
Target to substrate distance | 7 cm |
Deposition rate | 2.3 nm/min |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Presmanes, L.; Thimont, Y.; Chapelle, A.; Blanc, F.; Talhi, C.; Bonningue, C.; Barnabé, A.; Menini, P.; Tailhades, P. Highly Sensitive Sputtered ZnO:Ga Thin Films Integrated by a Simple Stencil Mask Process on Microsensor Platforms for Sub-ppm Acetaldehyde Detection. Sensors 2017, 17, 1055. https://doi.org/10.3390/s17051055
Presmanes L, Thimont Y, Chapelle A, Blanc F, Talhi C, Bonningue C, Barnabé A, Menini P, Tailhades P. Highly Sensitive Sputtered ZnO:Ga Thin Films Integrated by a Simple Stencil Mask Process on Microsensor Platforms for Sub-ppm Acetaldehyde Detection. Sensors. 2017; 17(5):1055. https://doi.org/10.3390/s17051055
Chicago/Turabian StylePresmanes, Lionel, Yohann Thimont, Audrey Chapelle, Frédéric Blanc, Chabane Talhi, Corine Bonningue, Antoine Barnabé, Philippe Menini, and Philippe Tailhades. 2017. "Highly Sensitive Sputtered ZnO:Ga Thin Films Integrated by a Simple Stencil Mask Process on Microsensor Platforms for Sub-ppm Acetaldehyde Detection" Sensors 17, no. 5: 1055. https://doi.org/10.3390/s17051055
APA StylePresmanes, L., Thimont, Y., Chapelle, A., Blanc, F., Talhi, C., Bonningue, C., Barnabé, A., Menini, P., & Tailhades, P. (2017). Highly Sensitive Sputtered ZnO:Ga Thin Films Integrated by a Simple Stencil Mask Process on Microsensor Platforms for Sub-ppm Acetaldehyde Detection. Sensors, 17(5), 1055. https://doi.org/10.3390/s17051055