# Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Electromagnetic (EM) Damper Design

## 3. Characteristic Test of the EM Damper

## 4. Hybrid Simulation of the EM Damper

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Wang, P.J.; Chiueh, S.J. Analysis of eddy-current brakes for high speed railway. IEEE Trans. Magn.
**1998**, 34, 1237–1239. [Google Scholar] [CrossRef] - Jang, S.M.; Lee, S.H.; Jeong, S.S. Characteristic analysis of eddy-current brake system using the linear Halbach array. IEEE Trans. Magn.
**2002**, 38, 2994–2996. [Google Scholar] [CrossRef] - Ebrahimi, B.; Khamesee, M.B.; Golnaraghi, F. Eddy current damper feasibility in automobile suspension: Modeling, simulation and testing. Smart Mater. Struct.
**2008**, 18, 15017. [Google Scholar] [CrossRef] - Ebrahimi, B.; Khamesee, M.B.; Golnaraghi, M.F. Design and modeling of a magnetic shock absorber based on eddy current damping effect. J. Sound Vib.
**2008**, 315, 875–889. [Google Scholar] [CrossRef] - Zhang, Y.; Zhou, H.; Sun, H.Z. Research of the orthoscopic permanent magnet eddy current damper in magnetic stage. In Proceedings of the Computer Application and System Modeling (ICCASM), Taiyuan, China, 22–24 October 2010; Volume 14, pp. 354–356. [Google Scholar]
- Lee, C.M.; Han, K.H.; Choi, Y.Y. The Study on Shield Moving ECB with PM for Application of Railway Vehicle. Trans. Korean Inst. Electr. Eng.
**2014**, 63, 1737–1741. [Google Scholar] [CrossRef] - Nagem, R.J.; Madanshetty, S.I.; Medhi, G. An electromechanical vibration absorber. J. Sound Vib.
**1997**, 200, 551–556. [Google Scholar] [CrossRef] - Nerves, A.C.; Krishnan, R. A strategy for active control of tall civil structures using regenerative electric actuators. Proc. Eng. Mech. Spec. Conf. ASCE
**1996**, 503–506. [Google Scholar] - Sodano, H.A.; Bae, J.S. Eddy current damping in structures. Shock Vib. Dig.
**2004**, 36, 469–478. [Google Scholar] [CrossRef] - Nakamura, Y.; Fukukita, A.; Tamura, K.; Yamazaki, I.; Matsuoka, T.; Hiramoto, K.; Sunakoda, K. Seismic response control using electromagnetic inertial mass dampers. Earthq. Eng. Struct. Dyn.
**2014**, 43, 507–527. [Google Scholar] [CrossRef] - Amjadian, M.; Agrawal, A.K. A passive electromagnetic eddy current friction damper (PEMECFD): Theoretical and analytical modeling. Struct. Control Health Monit.
**2017**, 24. [Google Scholar] [CrossRef] - Palomera-Arias, R. Passive Electromagnetic Damping Device for Motion Control of Building Structures. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2005. [Google Scholar]
- Palomera-Arias, R.; Connor, J.J.; Ochsendorf, J.A. Feasibility study of passive electromagnetic damping systems. J. Struct. Eng.
**2008**, 134, 164–170. [Google Scholar] [CrossRef] - Shen, W.; Zhu, S. Harvesting energy via EM damper: Application to bridge stay cables. J. Intell. Mater. Syst. Struct.
**2015**, 26, 3–19. [Google Scholar] [CrossRef] - Shen, W. Electromagnetic Damping and Energy Harvesting Devices in Civil Structures. Ph.D. Thesis, The Hong Kong Polytechnic University, Hong Kong, China, 2014. [Google Scholar]
- Shi, X.; Zhu, S.; Spencer, B.F., Jr. Experimental Study on Passive Negative Stiffness Damper for Cable Vibration Mitigation. J. Eng. Mech.
**2017**, 143, 4017070. [Google Scholar] [CrossRef] - Priya, S.; Inman, D.J. Energy Harvesting Technologies; Springer: New York, NY, USA, 2009; Volume 21. [Google Scholar]
- Joyce, B.S. Development of an Electromagnetic Energy Harvester for Monitoring Wind Turbine Blades. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2011. [Google Scholar]
- Nakashima, M. Development, potential, and limitations of real-time online (pseudo-dynamic) testing. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
**2001**, 359, 1851–1867. [Google Scholar] [CrossRef] - Williams, M.S. Real-time hybrid testing in structural dynamics. In Proceedings of the 5th Australasian Congress on Applied Mechanics, Brisbane, Australia, 10–12 December 2007. [Google Scholar]
- Reinhorn, A.M.; Sivaselvan, M.V.; Liang, Z.; Shao, X.; Pitman, M.; Weinreber, S. Large scale real time dynamic hybrid testing technique-shake tables substructure testing. Proc. Int. Conf. Adv. Exp. Struct. Eng.
**2005**, 1, 457–464. [Google Scholar] - Kim, I.H.; Jung, H.J.; Kim, J.T. Numerical investigation of an MR damper-based smart passive control system for mitigating vibration of stay cables. Struct. Eng. Mech.
**2011**, 37, 443–458. [Google Scholar] [CrossRef] - Johnson, E.A.; Baker, G.A.; Spencer, B.F., Jr.; Fujino, Y. Semiactive damping of stay cables. J. Eng. Mech.
**2007**, 133, 1–11. [Google Scholar] [CrossRef] - Craig, R.R. Structural Dynamics: An Introduction to Computer Methods; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1981. [Google Scholar]
- Park, J.W.; Jung, H.J.; Jo, H.; Jang, S.; Spencer, B.F., Jr. Feasibility study of wind generator for smart wireless sensor node in cable-stayed bridge. Proc. SPIE
**2010**, 7647. [Google Scholar] [CrossRef]

**Figure 1.**Electromagnetic (EM) damper configuration and design parameters [12].

**Table 1.**Electromagnetic (EM) damper design parameter [12].

Parameter | Symbol | Description |
---|---|---|

Pole pitch | ${\tau}_{p}$ | Distance between changes in polarity |

Magnet length | ${\tau}_{m}$ | Actual length of magnet |

Pole shoe width | ${\tau}_{f}$ | Width of the pole shoes |

Air gap | $g$ | Distance between the mover and armature windings |

Number of poles | $p$ | Even number of poles in the machine |

Coil width | ${\tau}_{w}$ | Width of each coil in the armature |

Wire radius | ${r}_{w}$ | Radius of the coil wire |

Coil turns | ${N}_{w}$ | Number of turns on each coil |

Active coil turns | ${N}_{a}$ | Number of turns on each coil intercepted by the pole shoe flux |

Mover radius | ${r}_{m}$ | Radius of the outside surface of the magnets |

Armature radius | ${r}_{i}$ | Radius of the inside surface of the armature |

Stator yoke radius | ${r}_{s}$ | Radius of the inside surface of the stator yoke |

Machine radius | ${r}_{e}$ | Radius of the outer surface of the motor |

Yoke thickness | ${h}_{y}$ | The thickness of the armature shell |

Parameter | Symbol | Dimension |
---|---|---|

Pole pitch | ${\tau}_{p}$ | 0.07 m |

Magnet length | ${\tau}_{m}$ | 0.06 m |

Air gap | $g$ | 0.001 m |

Number of poles | $p$ | 1 |

Coil height | ${h}_{w}$ | 0.02 m |

Wire radius | ${r}_{w}$ | 0.0045 m |

Coil turns | ${N}_{w}$ | 1400 turn |

Coil resistance | $R$ | 27 Ω |

Yoke thickness | ${h}_{y}$ | 0.02 m |

Amplitude | Frequency | External Resistance | |
---|---|---|---|

Case 1–4 | 6 mm, 9 mm, 12 mm, 15 mm | 1 Hz | 0 ohm |

Case 5–8 | 6 mm, 9 mm, 12 mm, 15 mm | 2 Hz | 0 ohm |

Case 9–12 | 6 mm, 9 mm, 12 mm, 15 mm | 3 Hz | 0 ohm |

Case 13–16 | 6 mm, 9 mm, 12 mm, 15 mm | 4 Hz | 0 ohm |

Case 17–19 | 6 mm, 9 mm, 12 mm | 5 Hz | 0 ohm |

Properties | Value |
---|---|

Mass per unit length | 22.1 kg/m |

Cable length | 20 m |

Diameter | 54.6 mm |

Cable tension | 50 kN |

Young’s modulus | 189 MPa |

Inclination | 8.38° |

Cross section area | 0.0023${\text{}\mathrm{m}}^{2}$ |

Location of damper | 5% length of cable |

Case | Damping Ratio |
---|---|

Uncontrolled | 0.0048 |

Controlled 0 ohm | 0.0132 |

Controlled 27 ohm | 0.0113 |

Controlled 54 ohm | 0.0100 |

Displacement (cm) | Acceleration ($\mathbf{m}/{\mathbf{s}}^{2}$) | FFT Amplitude | |
---|---|---|---|

1st natural frequency | 3.717 | 2.044 | 1.136 |

1.447 (61.07%) | 0.839 (58.95%) | 0.520 (54.26%) | |

2nd natural frequency | 1.106 | 2.434 | 1.800 |

0.343 (68.99%) | 0.856 (64.83%) | 0.629 (65.05%) | |

3rd natural frequency | 0.424 | 2.092 | 1.670 |

0.152 (64.15%) | 0.934 (55.35%) | 0.572 (65.75%) |

RMS Voltage (V) | RMS Current (A) | RMS Power (mW) | |
---|---|---|---|

0 ohm | 0.0801 | 0.1881 | 15.1 |

2 ohm | 0.3679 | 0.1841 | 67.7 |

4 ohm | 0.6865 | 0.1730 | 118.8 |

6 ohm | 0.9799 | 0.1647 | 161.3 |

8 ohm | 1.2486 | 0.1571 | 196.1 |

10 ohm | 1.4984 | 0.1506 | 225.7 |

27 ohm | 2.9981 | 0.1170 | 350.8 |

54 ohm | 4.3179 | 0.0863 | 372.6 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jung, H.-Y.; Kim, I.-H.; Jung, H.-J.
Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation. *Sensors* **2017**, *17*, 2499.
https://doi.org/10.3390/s17112499

**AMA Style**

Jung H-Y, Kim I-H, Jung H-J.
Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation. *Sensors*. 2017; 17(11):2499.
https://doi.org/10.3390/s17112499

**Chicago/Turabian Style**

Jung, Ho-Yeon, In-Ho Kim, and Hyung-Jo Jung.
2017. "Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation" *Sensors* 17, no. 11: 2499.
https://doi.org/10.3390/s17112499