Iodine Absorption Cells Purity Testing
Abstract
:1. Introduction
2. Absorption Cell Technology
3. Measurement of Iodine Cell Purity
3.1. Laser-Induced Fluorescence (LIF) Method
3.2. Absolute Frequency Measurement
3.3. Hyperfine Transition Linewidth Measurement
4. Experimental Results
4.1. A Set of Testing Iodine Cells
4.2. Laser-Induced Fluorescence Systems Comparison and Improvement
4.3. Transition Linewidth versus Laser-Induced Fluorescence Methods
4.4. Recommendation for the Purity Evaluation of Iodine Absorption Cells
4.5. Frequency Stability of Iodine-Stabilized Fiber Laser
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leute, J.; Huntemann, N.; Lipphardt, B.; Tamm, C.; Nisbet-Jones, P.B.R.; King, S.A.; Godun, R.M.; Jones, J.M.; Margolis, H.S.; Whibberley, P.B.; et al. Frequency Comparison of 171Yb+ Ion Optical Clocks at PTB and NPL via GPS PPP. IEEE Trans. Ultrason. Ferroelectr. 2016, 63, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, T.L.; Campbell, S.L.; Hutson, R.B.; Marti, G.E.; Bloom, B.J.; McNally, R.L.; Zhang, W.; Barrett, M.D.; Safronova, M.S.; Strouse, G.F.; et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun. 2015, 6, 6896. [Google Scholar] [CrossRef] [PubMed]
- Abgrall, M.; Chupin, B.; De Sarlo, L.; Guena, J.; Laurent, P.; Le Coq, Y.; Le Targat, R.; Lodewyck, J.; Lours, M.; Rosenbusch, P.; et al. Atomic fountains and optical clocks at SYRTE: Status and perspectives. C. R. Phys. 2015, 16, 461–470. [Google Scholar] [CrossRef]
- Huntemann, N.; Sanner, C.; Lipphardt, B.; Tamm, C.; Peik, E. Single-Ion Atomic Clock with 3 × 10−18 Systematic Uncertainty. Phys. Rev. Lett. 2016, 116, 063001. [Google Scholar] [CrossRef] [PubMed]
- Goebel, E.O.; Siegner, U. Quantum Metrology: Foundation of Units and Measurement; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Stellmer, S.; Schreal, M.; Kazakov, G.; Yoshimura, K.; Schumm, T. Towards a measurement of the nuclear clock transition in Th-229. In Proceedings of the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 12–16 October 2015.
- Schuldt, T.; Doringshoff, K.; Kovalchuk, E.; Gohlke, M.; Weise, D.; Johann, U.; Peters, A.; Braxmaier, C. An Absolute Optical Frequency Reference Based on Doppler-Free Spectroscopy of Molecular Iodine Developed for Future Applications in Space. In Proceedings of the 2014 DGaO Proceedings, Brno, Czech Republic, 26–29 May 2014.
- Balling, P.; Fischer, M.; Kubina, P.; Holzwarth, R. Absolute frequency measurement of wavelength standard at 1542 nm: Acetylene stabilized DFB laser. Opt. Express 2005, 13, 9196–9201. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, G.; Robertsson, L.; Zucco, M.; Pisani, M.; Germak, A. A low-finesse Fabry-Perot interferometer for use in displacement measurements with applications in absolute gravimetry. Appl. Phys. B Lasers Opt. 2012, 106, 829–834. [Google Scholar] [CrossRef]
- Quinn, T.J. Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia 2003, 40, 103–133. [Google Scholar] [CrossRef]
- Edwards, C.S.; Margolis, H.S.; Barwood, G.P.; Lea, S.N.; Gill, P.; Huang, G.L.; Rowley, W.R.C. Absolute frequency measurement of a 1.5 μm acetylene standard by use of a combined frequency chain and femtosecond comb. Opt. Lett. 2004, 29, 566–568. [Google Scholar] [CrossRef] [PubMed]
- Bruner, A.; Mahal, V.; Kiryuschev, I.; Arie, A.; Arbore, M.A.; Fejer, M.M. Frequency stability at the kilohertz level of a rubidium-locked diode laser at 192.114 THz. Appl. Opt. 1998, 37, 6410–6414. [Google Scholar] [CrossRef] [PubMed]
- Fredin-Picard, S.; Robertsson, L.; Ma, L.S.; Nyholm, K.; Merimaa, M.; Ahola, T.E.; Balling, P.; Kren, P.; Wallerand, J.P. Comparison of 127I2− stabilized frequency-doubled Nd:YAG lasers at the Bureau International des Poids et Mesures. Appl. Opt. 2003, 42, 1019–1028. [Google Scholar] [CrossRef]
- Hrabina, J.; Lazar, J.; Klapetek, P.; Cip, O. Multidimensional interferometric tool for the local probe microscopy nanometrology. Meas. Sci. Technol. 2011, 22, 094030. [Google Scholar] [CrossRef]
- Ye, J.; Ma, L.S.; Hall, J.L. Molecular iodine clock. Phys. Rev. Lett. 2001, 87, 270801. [Google Scholar] [CrossRef] [PubMed]
- Lazar, J.; Hrabina, J.; Jedlicka, P.; Cip, O. Absolute frequency shifts of iodine cells for laser stabilization. Metrologia 2009, 46, 450–456. [Google Scholar] [CrossRef]
- Simmons, J.D.; Hougen, J.T. Atlas of I2 Spectrum from 19,000 to 18,000 cm−1. J. Res. Natl. Bur. Stand. Phys. Chem. 1977, 81, 25–80. [Google Scholar] [CrossRef]
- Gerstenkorn, S.; Luc, P.; Verges, J.; Chevillard, J. Atlas du Spectre D’absorption de la Molécule D’iode; Laboratoire Aimé Cotton: Orsay, France, 1978. [Google Scholar]
- Mironov, A.V.; Privalov, V.E.; Savelev, S.K. Complete calculated atlas of the absorption spectrum of iodine-127 (B-X system of bands) and complex of programs for the tabulation of iodine lines. Opt. Spectrosc. 1997, 82, 332–333. [Google Scholar]
- Zucco, M.; Robertsson, L.; Wallerand, J.P. Laser-induced fluorescence as a tool to verify the reproducibility of iodine-based laser standards: A study of 96 iodine cells. Metrologia 2013, 50, 402–408. [Google Scholar] [CrossRef]
- Hrabina, J.; Sarbort, M.; Acef, O.; Du Burck, F.; Chiodo, N.; Hola, M.; Cip, O.; Lazar, J. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure. Appl. Opt. 2014, 53, 7435–7441. [Google Scholar] [CrossRef] [PubMed]
- Lurie, A.; Light, P.S.; Anstie, J.; Stace, T.M.; Abbott, P.C.; Benabid, F.; Luiten, A.N. Saturation spectroscopy of iodine in hollow-core optical fiber. Opt. Express 2012, 20, 11906–11917. [Google Scholar] [CrossRef] [PubMed]
- Hald, J.; Nielsen, L.; Petersen, J.C.; Varming, P.; Pedersen, J.E. Fiber laser optical frequency standard at 1.54 μm. Opt. Express 2011, 19, 2052–2063. [Google Scholar] [CrossRef] [PubMed]
- Marty, P.T.; Morel, J.; Feurer, T. All-Fiber Multi-Purpose Gas Cells and Their Applications in Spectroscopy. J. Lightwave Technol. 2010, 28, 1236–1240. [Google Scholar] [CrossRef]
- Quinn, T.J.; Chartier, J.M. A New-Type of Iodine Cell for Stabilized Lasers. IEEE Trans. Instrum. Meas. 1993, 42, 405–406. [Google Scholar] [CrossRef]
- Stern, O.; Volmer, M. On the quenching-time of fluorescence. Physik. Zeitschr. 1919, 20, 183–188. [Google Scholar]
- Fredin-Picard, S. A Study of Contamination in 127I2 Cells Using Laser-Induced Fluorescence. Metrologia 1989, 26, 235–244. [Google Scholar] [CrossRef]
- Nevsky, A.Y.; Holzwarth, R.; Reichert, J.; Udem, T.; Hansch, T.W.; von Zanthier, J.; Walther, H.; Schnatz, H.; Riehle, F.; Pokasov, P.V.; et al. Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm. Opt. Commun. 2001, 192, 263–272. [Google Scholar] [CrossRef]
- Balling, P.; Smid, M.; Sebek, P.; Matus, M.; Tomanyiczka, K.; Banreti, E. Comparison of primary standards of length: He-Ne lasers at λ = 633 nm frequency-stabilized to the hyperfine structure of I2. Metrologia 1999, 36, 433–437. [Google Scholar] [CrossRef]
- Hrabina, J.; Petru, F.; Jedlicka, P.; Cip, O.; Lazar, J. Purity of iodine cells and optical frequency shift of iodine-stabilized He-Ne lasers. Optoelectron. Adv. Mater. 2007, 1, 202–206. [Google Scholar]
- Demtroder, W. Laser Spectroscopy, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Wallard, A.J. Frequency Stabilization of Helium-Neon Laser by Saturated Absorption in Iodine Vapor. J. Phys. E Sci. Instrum. 1972, 5, 926–930. [Google Scholar] [CrossRef]
- Hall, J.L.; Hollberg, L.; Baer, T.; Robinson, H.G. Optical Heterodyne Saturation Spectroscopy. Appl. Phys. Lett. 1981, 39, 680–682. [Google Scholar] [CrossRef]
- Gill, P.; Thompson, R.C. The Preparation and Analysis of Iodine Cells. Metrologia 1987, 23, 161–166. [Google Scholar] [CrossRef]
- Philippe, C.; Chea, E.; Nishida, Y.; du Burck, F.; Acef, O. Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode. Appl. Phys. B 2016, 122. [Google Scholar] [CrossRef]
- Jungner, P.A.; Swartz, S.; Eickhoff, M.; Ye, J.; Hall, J.L.; Waltman, S. Absolute Frequency of the Molecular-Iodine Transition R(56) (32-0) near 532 nm. IEEE Trans. Instrum. Meas. 1995, 44, 151–154. [Google Scholar] [CrossRef]
- Philippe, C.; Le Targat, R.; Holleville, D.; Lours, M.; Pham, M.T.; Hrabina, J.; Du Burck, F.; Wolf, P.; Acef, O. Frequency tripled 1.5 μm telecom laser diode stabilized to iodine hyperfine line in the 10–15 range. In Proceedings of the 2016 European Frequency and Time Forum (EFTF), York, UK, 4–7 April 2016.
- Argence, B.; Prevost, E.; Leveque, T.; Le Goff, R.; Bize, S.; Lemonde, P.; Santarelli, G. Prototype of an ultra-stable optical cavity for space applications. Opt. Express 2012, 20, 25409–25420. [Google Scholar] [CrossRef] [PubMed]
Cell Names | Date of Filling | Length (mm) | Active Diameter (mm) | Material, Comments |
---|---|---|---|---|
C1, C2 | 2013 | 400 | 20 | Borosilicate, Starved to +14 °C |
C3–C6 | 2014 | 500 | 22, AR coatings | Fused silica |
C7 | 2003 | 500 | 20 | Fused silica |
C8 | 2003 | 300 | 22 | Fused silica |
C9 | 2010 | 180 | 10, Brewster | Fused silica, Brewster windows |
C10 | 2013 | 300 | 22, AR coatings | Fused silica, Leakage/contaminated |
Cell Name | C1 | C3 | C2 | C4 | C5 | C6 | C7 | C8 * | C9 | C10 |
---|---|---|---|---|---|---|---|---|---|---|
LIF-INRIM (Pa) | 0.75 | 0.80 | 0.90 | 1.05 | 1.00 | 1.35 | 1.70 | 2.26 | 2.74 | 2.83 |
Date of meas | 2014 | 2014 | 2014 | 2014 | 2014 | 2014 | 2013 | 2011 | 2013 | 2013 |
LIF-ISI (Pa) | 0.75 | 0.75 | 0.85 | 0.86 | 0.88 | 1.33 | 1.67 | 2.59 | 2.79 | 2.99 |
Date of meas | 2014 | 2014 | 2014 | 2014 | 2014 | 2014 | 2014 | 2014 | 2014 | 2014 |
Laser-Induced Fluorescence Method | Hyperfine Transition Linewidth Method | Absolute Frequency Shifts Measurement | |
---|---|---|---|
Advantages | Simple setup, quick measurement, easy adjustment | Good sensitivity, can use existing laser standard setup, can be used for HC-PCF based references evaluation, can be performed at different available laser wavelengths | Can use existing laser standard setups usually available in metrological labs. The direction and intensity of the shift could give an indication of the impurity specie. |
Difficulties | Rare laser wavelength (502 nm), resolution limit for very good cells, particularly problems of stray light (for example short cells), impossible for HC-PCF based references evaluation, need a reference cell (in case of improved arrangement) | Problems for highly contaminated cells (SNR degradation), time requirements due to demanding measurement process | Problems for highly polluted cells (SNR degradation), many overall shift-affecting parameters (worse reproducibility for different opto-mechanical arrangement changes), need of additional absolute optical frequency reference, unadvisable for HC-PCF based reference testing (insufficient stability) |
Suitable for | Middle-to-high polluted cells (K0 > 1 Pa) | Clean and middle-polluted cells (K0 < 2 Pa) | Clean and middle-polluted cells with possible locking of the laser (K0 < 2 Pa) |
Relation slopes referenced to LIF method * |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrabina, J.; Zucco, M.; Philippe, C.; Pham, T.M.; Holá, M.; Acef, O.; Lazar, J.; Číp, O. Iodine Absorption Cells Purity Testing. Sensors 2017, 17, 102. https://doi.org/10.3390/s17010102
Hrabina J, Zucco M, Philippe C, Pham TM, Holá M, Acef O, Lazar J, Číp O. Iodine Absorption Cells Purity Testing. Sensors. 2017; 17(1):102. https://doi.org/10.3390/s17010102
Chicago/Turabian StyleHrabina, Jan, Massimo Zucco, Charles Philippe, Tuan Minh Pham, Miroslava Holá, Ouali Acef, Josef Lazar, and Ondřej Číp. 2017. "Iodine Absorption Cells Purity Testing" Sensors 17, no. 1: 102. https://doi.org/10.3390/s17010102
APA StyleHrabina, J., Zucco, M., Philippe, C., Pham, T. M., Holá, M., Acef, O., Lazar, J., & Číp, O. (2017). Iodine Absorption Cells Purity Testing. Sensors, 17(1), 102. https://doi.org/10.3390/s17010102