# A Novel Probabilistic Data Association for Target Tracking in a Cluttered Environment

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Target Tracking Dynamic System in a Cluttered Environment

## 3. A Novel Probabilistic Data Association

#### 3.1. Probabilistic Data Association (PDA) Algorithm

#### 3.2. A New Association Probability of PDA

#### 3.3. Improved C-IMM-PDA Algorithm

## 4. Simulation and Analysis

#### 4.1. The Dynamic Model

#### 4.2. Simulation and Analysis of Non-Maneuvering Target Tracking

#### 4.2.1. Simulation 1: Single Target Tracking Simulation Scenario

#### 4.2.2. Simulation 2: Two-Target Tracking Simulation Scenario

- (1)
- Two parallel-target tracking. The initial states are ${x}_{\mathrm{a}}=\left[200\text{}\mathrm{m}\text{}15\text{}\mathrm{m}/\mathrm{s}\text{}100\text{}\mathrm{m}\text{}10\text{}\mathrm{m}/\mathrm{s}\right]$, ${x}_{\mathrm{b}}=\left[200\mathrm{m}\text{}15\mathrm{m}/\mathrm{s}\text{}300\mathrm{m}\text{}10\mathrm{m}/\mathrm{s}\right]$, the target stays at a constant velocity between 0 s and 50 s.
- (2)
- Two small-angle crossing target tracking. The initial states are ${x}_{\mathrm{a}}=\left[100\text{}\mathrm{m}\text{}20\text{}\mathrm{m}/\mathrm{s}\text{}300\text{}\mathrm{m}\text{}0\text{}\mathrm{m}/\mathrm{s}\right]$, ${x}_{\mathrm{b}}=\left[100\mathrm{m}\text{}20\mathrm{m}/\mathrm{s}\text{}200\mathrm{m}\text{}5\mathrm{m}/\mathrm{s}\right]$, the target stays at a constant velocity between 0 s and 100 s.

#### 4.3. Simulation and Analysis of Maneuvering Target Tracking

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- You, H.; Yong, H.; Jian, G.; Xiaolong, C. An Overview on Radar Target Detection in Sea Clutter. Mod. Radar
**2014**, 36, 1–9. [Google Scholar] - Yardim, C.; Michalopoulou, Z.; Gerstoft, P. An Overview of Sequential Bayesian Filtering in Ocean Acoustics. IEEE J. Ocean. Eng.
**2011**, 36, 71–89. [Google Scholar] [CrossRef] - Öksüz, K. The comparison of the performances of global nearest neighbor and probability hypothesis density filter for varying clutter rates. In Proceedings of the 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 16–19 May 2016; pp. 677–680.
- Zeng, T.; Zheng, L.; Li, Y.; Chen, X.; Long, T. Offline Performance Prediction of PDAF with Bayesian Detection for Tracking in Clutter. IEEE Trans. Signal Process.
**2013**, 61, 770–781. [Google Scholar] [CrossRef] - Habtemariam, B.; Tharmarasa, R.; Thayaparan, T.; Mallick, M.; Kirubarajan, T. A Multiple-Detection Joint Probabilistic Data Association Filter. IEEE J. Sel. Top. Signal Process.
**2013**, 7, 461–471. [Google Scholar] [CrossRef] - Hernandez, M.; Benavoli, A.; Graziano, A.; Farina, A.; Morelande, M. Performance Measures and MHT for Tracking Move-Stop-Move Targets with MTI Sensors. IEEE Trans. Aerosp. Electron. Syst.
**2011**, 47, 996–1025. [Google Scholar] [CrossRef] - Mahler, R. PHD filters of higher order in target number. IEEE Trans. Aerosp. Electron. Syst.
**2007**, 43, 1523–1543. [Google Scholar] [CrossRef] - Vo, B.-T.; Vo, B.-N.; Cantoni, A. Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter. IEEE Trans. Signal Process.
**2007**, 55, 3553–3567. [Google Scholar] [CrossRef] - Fitzgerald, R.J. Development of Practical PDA Logic for Multitarget Tracking by Microprocessor. In Multitarget-Multisensor Tracking: Advanced Applications; Bar-Shalom, Y., Ed.; Artech House: Norwood, MA, USA, 1990; pp. 1–23. [Google Scholar]
- Bar-Shalom, Y.; Chang, K.; Blom, H. Automatic Track Formation in Clutter with a Recursive Algorithm in Multitarget Multisensor Tracking; Artech House: Norwood, MA, USA, 1990; pp. 25–42. [Google Scholar]
- Kennedy, H.L. Controlling Track Coalescence with Scaled Joint Probabilistic Data Association. In Proceedings of the 2008 International Conference on Radar, Adelaide, Australia, 2–5 September 2008; pp. 440–445.
- Blom, H.; Bloem, E. Probabilistic data association avoiding track coalescence. IEEE Trans. Autom. Control
**2000**, 45, 247–259. [Google Scholar] [CrossRef] - Svensson, L.; Svensson, D.; Guerriero, M.; Willett, P. Set JPDA Filter for Multitarget Tracking. IEEE Trans. Signal Process.
**2011**, 59, 4677–4691. [Google Scholar] [CrossRef] - Musicki, D.; Evans, R. Joint integrated probabilistic data association: JIPDA. IEEE Trans. Aerosp. Electron. Syst.
**2004**, 40, 1093–1099. [Google Scholar] [CrossRef] - Blom, H.A.P.; Bloem, E.A.; Musicki, D. JIPDA: Automatic target tracking avoiding track coalescence. IEEE Trans. Aerosp. Electron. Syst.
**2015**, 51, 962–974. [Google Scholar] [CrossRef] - Blom, H.A.; Bar-Shalom, Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Autom. Control
**1988**, 33, 780–783. [Google Scholar] [CrossRef] - Jilkov, V.P.; Angelova, D.S.; Semerdjiev, T.A. Design and comparison of mode-set adaptive IMM algorithms for maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst.
**1999**, 35, 343–350. [Google Scholar] [CrossRef] - Xiao-Rong, L.; Bar-Shalom, Y. Multiple-model estimation with variable structure. IEEE Trans. Autom. Control
**1996**, 41, 478–493. [Google Scholar] [CrossRef] - Bar-Shalom, Y.; Houles, A. Multisensor tracking of a maneuvering target in clutter. IEEE Trans. Aerosp. Electron. Syst.
**1989**, 25, 176–189. [Google Scholar] - Pan, Q.; Liu, G.; Dai, G.; Zhang, H. Combined interacting multiple models probabilistic data association algorithm. Acta Aeronaut. Astronaut. Sin.
**1999**, 20, 234–238. [Google Scholar] - Ni, L.; Gao, S.; Xue, L. Improved Probabilistic Data Association and Its Application for Target Tracking in Clutter. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 293–296.

**Figure 1.**RMS position error statistics using PDA and improved PDA in different density clutter. (

**a**) $\lambda =1$; (

**b**) $\lambda =10$; and (

**c**) $\lambda =50$.

**Figure 2.**Tracking two parallel targets using PDA and improved PDA when clutter $\lambda =1$. (

**a**) Tracking of the target position; and (

**b**) RMS position error of the target.

**Figure 3.**Tracking two parallel targets using PDA and improved PDA when clutter $\lambda =5$. (

**a**) Tracking of the target position; and (

**b**) RMS position error of the target.

**Figure 4.**Tracking two crossing targets using PDA and improved PDA when clutter $\lambda =1$. (

**a**) Tracking of the target position; and (

**b**) RMS position error of the target.

**Figure 5.**Tracking two crossing targets using PDA and improved PDA when clutter $\lambda =5$. (

**a**) Tracking of the target position; and (

**b**) RMS position error of the target.

**Figure 6.**Maneuvering target tracking using C-IMM-PDA and improved C-IMM-PDA when clutter $\lambda =1$. (

**a**) Tracking of the target position; and (

**b**) RMS position error of the target.

**Figure 7.**Maneuvering target tracking using C-IMM-PDA and improved C-IMM-PDA when clutter $\lambda =10$. (

**a**) Tracking of the target position; and (

**b**) RMS position error of the target.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chen, X.; Li, Y.; Li, Y.; Yu, J.; Li, X.
A Novel Probabilistic Data Association for Target Tracking in a Cluttered Environment. *Sensors* **2016**, *16*, 2180.
https://doi.org/10.3390/s16122180

**AMA Style**

Chen X, Li Y, Li Y, Yu J, Li X.
A Novel Probabilistic Data Association for Target Tracking in a Cluttered Environment. *Sensors*. 2016; 16(12):2180.
https://doi.org/10.3390/s16122180

**Chicago/Turabian Style**

Chen, Xiao, Yaan Li, Yuxing Li, Jing Yu, and Xiaohua Li.
2016. "A Novel Probabilistic Data Association for Target Tracking in a Cluttered Environment" *Sensors* 16, no. 12: 2180.
https://doi.org/10.3390/s16122180