A Laser-Based Measuring System for Online Quality Control of Car Engine Block
Abstract
:1. Introduction
2. Measuring Principle of Laser Triangulation Sensor
3. System Configuration
4. Mathematical Model and Data Processing Algorithm
4.1. Mathematical Model
4.2. Data Processing Algorithm
- (1)
- Initializationxi,G is an D-dimensional individual, which is defined as:
- (2)
- MutationThe mutation vector vi,G is generated through Equation (17):
- (3)
- CrossoverThe exponential crossover operation is selected as the crossover strategy because this strategy usually has a good performance in nonlinear optimization. The trial vector is defined as:
- (4)
- SelectionThe offspring is defined as below:
- (5)
- Termination conditionG = G + 1. (The generation number G increases by one.)Repeat Steps 2–5 until the value of Func no longer decreases in the last 100 generations.
5. Experiments and Discussion
- (1)
- The measured engine block on production line is transported to proposed measuring system and finally located at Station 3.
- (2)
- Measured engine block is transported from Station 3 to Station 2 by double-acting cylinders.
- (3)
- The measuring unit moves down through the measured shaft holes. Data samples collected by the measuring unit are then transmitted to data processing system on RS-485 bus.
- (4)
- The measuring results are finally computed by data processing system.
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shi, Y.; Sun, C.; Wang, P.; Wang, Z.; Duan, H. High-Speed measurement algorithm for the position of holes in a large plane. Opt. Laser Eng. 2012, 50, 1828–1835. [Google Scholar] [CrossRef]
- Gromczak, K.; Gąska, A.; Ostrowska, K.; Sładek, J.; Harmatys, W.; Gaska, P.; Gruza, M.; Kowalski, M. Validation model for coordinate measuring methods based on the concept of statistical consistency control. Precis. Eng. 2012, 45, 414–422. [Google Scholar] [CrossRef]
- Cuesta, E.; Telenti, A.; Patiño, H.; González-Madruga, D.; Martínez-Pellitero, S. Sensor prototype to evaluate the contact force in measuring with coordinate measuring arms. Sensors 2015, 15, 13242–13257. [Google Scholar] [CrossRef] [PubMed]
- Mansour, G. A developed algorithm for simulation of blades to reduce the measurement points and time on coordinate measuring machine (CMM). Measurement 2014, 54, 51–57. [Google Scholar] [CrossRef]
- Marposs, “Hand Held Gauges”. Available online: http://www.marposs.com/product_line.php/eng/hand_held_gauges (accessed on 30 April 2000).
- Dell’Era, G.; Mersinligil, M.; Brouckaert, J.F. Assessment of Unsteady Pressure Measurement Uncertainty—Part I: Single Sensor Probe. ASME J. Eng. Gas. Turbines Power 2016, 138, 041601. [Google Scholar] [CrossRef]
- Dell’Era, G.; Mersinligil, M.; Brouckaert, J.F. Assessment of Unsteady Pressure Measurement Uncertainty—Part II: Virtual Three-Hole Probe. ASME J. Eng. Gas. Turbines Power 2016, 138, 041602. [Google Scholar] [CrossRef]
- Peiner, E.; Balke, M.; Doering, L. Slender tactile sensor for contour and roughness measurements within deep and narrow holes. IEEE Sens. J. 2008, 8, 1960–1967. [Google Scholar] [CrossRef]
- Alblalaihid, K.; Kinnell, P.; Lawes, S.; Desgaches, D.; Leach, R. Performance assessment of a new variable stiffness probing system for micro-CMMs. Sensors 2016, 16, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Feng, K.; Hu, Y.; Li, J.; Tan, J. A twin fiber Bragg grating probe for the dimensional measurement of microholes. IEEE Photonics Technol. Lett. 2014, 26, 1778–1781. [Google Scholar]
- Kulkarni, O.P.; Islam, M.N.; Terry, F.L. Optical probe for porosity defect detection on inner diameter surfaces of machined bores. Opt. Eng. 2010, 49, 123606. [Google Scholar] [CrossRef]
- Tong, Q.B.; Jiao, C.Q.; Huang, H.; Li, G.B.; Ding, Z.L.; Yuan, F. An automatic measuring method and system using laser triangulation scanning for the parameters of a screw thread. Meas. Sci. Technol. 2014, 25, 035202. [Google Scholar] [CrossRef]
- Schwenke, H.; Schmitt, R.; Jatzkowski, P.; Warmann, C. On-the-fly calibration of linear and rotary axes of machine tools and CMMs using a tracking interferometer. CIRP Ann. Manuf. Technol. 2009, 58, 477–480. [Google Scholar] [CrossRef]
- Lee, J.; Gao, W.; Shimizu, Y.; Hwang, J.; Oh, J.S.; Park, C.H. Spindle error motion measurement of a large precision roll lathe. Int. J. Precis. Eng. Manuf. 2012, 13, 861–867. [Google Scholar] [CrossRef]
- Zavyalov, P. 3D Hole Inspection Using Lens with High Field Curvature. Meas. Sci. Rev. 2015, 15, 52–57. [Google Scholar] [CrossRef]
- Kondo, Y.; Hasegawa, K.; Kawamata, H.; Morishita, T.; Naito, F. On-Machine non-contact dimension-measurement system with laser displacement sensor for vane-tip machining of RFQs. Nucl. Instrum. Methods Phys. Res. Sect. A 2012, 667, 5–10. [Google Scholar] [CrossRef]
- Jeong, H.J.; Yoo, H.; Gweon, D. High-Speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens. Opt. Express 2016, 24, 3806–3816. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, F.; Qu, X.; Liang, B. Fast measurement and reconstruction of large workpieces with freeform surfaces by combining local scanning and global position data. Sensors 2015, 15, 14328–14344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Qu, X.; Ouyang, J. An automated inner dimensional measurement system based on a laser displacement sensor for long-stepped pipes. Sensors 2012, 12, 5824–5834. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Zareie, S.; Alam, M.S.; Seethaler, R.J. Novel Method for Interstory Drift Measurement of Building Frames Using Laser-Displacement Sensors. J. Struc. Eng. 2016, 142, 06016001. [Google Scholar] [CrossRef]
- Boltryk, P.J.; Hill, M.; McBride, J.W.; Nasce, A. A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles. Sens. Actuators A 2008, 142, 2–11. [Google Scholar] [CrossRef]
- Bae, Y. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter. Sensors 2016, 16, 752. [Google Scholar] [CrossRef] [PubMed]
- Miks, A.; Novak, J.; Novak, P. Analysis of imaging for laser triangulation sensors under Scheimpflug rule. Opt. Express 2013, 21, 18225–18235. [Google Scholar] [CrossRef] [PubMed]
- Martinez, S.; Cuesta, E.; Barreiro, J.; Alvarez, B. Analysis of laser scanning and strategies for dimensional and geometrical control. Int. J. Adv. Manuf. Technol. 2010, 46, 621–629. [Google Scholar] [CrossRef]
- Stewart, J. Parametric Equations and Polar Coordinates. In Calculus, 7th ed.; Covello, L., Neustaetter, L., Staller, J., Ross, M., Eds.; Brooks/Cole: Belmont, CA, USA, 2010; Volume 10, pp. 670–687. [Google Scholar]
- Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009, 13, 945–958. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
Layer | The Intrinsic Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
x1 | y2 | x3 | x4 | y4 | θ1 | θ2 | θ3 | θ4 | γ | |
1 | 44.5671 | 44.5723 | 44.5713 | −0.1327 | −44.6198 | 0.1337 | 0.6959 | 1.2318 | 0.5715 | 0.3753 |
2 | 44.7193 | 44.6717 | 44.9979 | 0.3336 | −44.2274 | 1.2836 | 0.9078 | 1.1764 | 0.3842 | 0.3755 |
3 | 44.6228 | 44.6034 | 44.6315 | 0.2098 | −44.3536 | 0.7832 | 0.7344 | 1.3335 | 1.7318 | 0.3751 |
4 | 44.5234 | 44.5171 | 44.5297 | −0.1373 | −44.5475 | 0.0595 | 0.5375 | 1.5518 | 1.6273 | 0.3751 |
5 | 44.6866 | 44.6255 | 44.9436 | 0.3091 | −44.8171 | 0.9061 | 0.8224 | 0.5942 | 0.8619 | 0.3753 |
Layer | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | Average Value | Standard Deviation | Standard Value |
---|---|---|---|---|---|---|---|---|
1 | 91.9972 | 92.0010 | 91.9969 | 91.9993 | 91.9966 | 91.9982 | 0.0019 | 91.9997 |
2 | 91.9989 | 91.9989 | 92.0002 | 91.9997 | 92.0018 | 91.9999 | 0.0012 | 92.0011 |
3 | 91.9972 | 92.0013 | 91.9979 | 91.9981 | 91.9970 | 91.9983 | 0.0017 | 91.9999 |
4 | 91.9921 | 91.9946 | 91.9928 | 91.9959 | 91.9921 | 91.9935 | 0.0017 | 91.9947 |
5 | 92.0002 | 92.0009 | 92.0011 | 92.0028 | 92.0035 | 92.0017 | 0.0014 | 92.0026 |
Layer | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | Average Value | Standard Deviation | Standard Value |
---|---|---|---|---|---|---|---|---|
1 | 91.9931 | 91.9952 | 91.9962 | 91.9934 | 91.9956 | 91.9947 | 0.0014 | 91.9959 |
2 | 92.0048 | 92.0057 | 92.0061 | 92.0049 | 92.0075 | 92.0058 | 0.0011 | 92.0070 |
3 | 91.9975 | 91.9991 | 92.0018 | 91.9985 | 92.0006 | 91.9995 | 0.0017 | 91.9984 |
4 | 91.9962 | 91.9966 | 91.9976 | 91.9983 | 91.9983 | 91.9974 | 0.0010 | 91.9960 |
5 | 91.9993 | 91.9985 | 92.0004 | 91.9986 | 92.0012 | 91.9996 | 0.0012 | 91.9984 |
Layer | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | Average Value | Standard Deviation | Standard Value |
---|---|---|---|---|---|---|---|---|
1 | 91.9956 | 91.9964 | 91.9977 | 91.9982 | 91.9956 | 91.9967 | 0.0012 | 91.9973 |
2 | 92.0035 | 92.0038 | 92.0047 | 92.0048 | 92.0037 | 92.0041 | 0.0006 | 92.0053 |
3 | 91.9958 | 91.9985 | 91.9961 | 91.9965 | 91.9971 | 91.9968 | 0.0011 | 91.9981 |
4 | 91.9948 | 91.9948 | 91.9972 | 91.9976 | 91.9966 | 91.9962 | 0.0013 | 91.9958 |
5 | 91.9978 | 92.0013 | 91.9982 | 91.9999 | 92.0008 | 91.9996 | 0.0016 | 92.0007 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.-Q.; Wang, Z.; Fu, L.-H. A Laser-Based Measuring System for Online Quality Control of Car Engine Block. Sensors 2016, 16, 1877. https://doi.org/10.3390/s16111877
Li X-Q, Wang Z, Fu L-H. A Laser-Based Measuring System for Online Quality Control of Car Engine Block. Sensors. 2016; 16(11):1877. https://doi.org/10.3390/s16111877
Chicago/Turabian StyleLi, Xing-Qiang, Zhong Wang, and Lu-Hua Fu. 2016. "A Laser-Based Measuring System for Online Quality Control of Car Engine Block" Sensors 16, no. 11: 1877. https://doi.org/10.3390/s16111877
APA StyleLi, X.-Q., Wang, Z., & Fu, L.-H. (2016). A Laser-Based Measuring System for Online Quality Control of Car Engine Block. Sensors, 16(11), 1877. https://doi.org/10.3390/s16111877