Genetics and Conservation of Plant Species of Extremely Narrow Geographic Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Tissue
2.3. Genotyping and Genetic Analyses
2.4. Population Structure
2.5. Genetic Diversity
3. Results
3.1. Population Structure
3.2. Genetic Diversity
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rabinowitz, D. Seven forms of rarity. In The Biological Aspects of Rare Plant Conservation; Synge, H., Ed.; John Wiley & Sons: New York, NY, USA, 1981; pp. 205–217. [Google Scholar]
- Kunin, W.E.; Gaston, K.J. The biology of rarity: Patterns, causes and consequences. Trends Ecol. Evol. 1993, 8, 298–301. [Google Scholar] [CrossRef]
- Callmander, M.W.; Schatz, G.E.; Lowry, P.P. IUCN Red List Assessment and the Global Strategy for Plant Conservation: Taxonomists must act now. Taxon 2005, 54, 1047–1054. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, G.; Grumbine, R.E.; Dao, Z.; Sun, W.; Guo, H. Conserving plant species with extremely small populations (PSESP) in China. Biodivers. Conserv. 2013, 22, 803–809. [Google Scholar] [CrossRef]
- International Union for Conservation of the Nature (IUCN). IUCN Red List Categories and Criteria. Available online: http://www.iucnredlist.org/static/categories_criteria_3_1 (accessed on 11 September 2016).
- López-Pujol, J.; Martinell, M.C.; Massó, S.; Blanché, C.; Sáez, L. The “paradigm of extremes”: Extremely low genetic diversity in an extremely narrow endemic species, Coristospermum huteri (Umbelliferae). Plant Syst. Evol. 2013, 299, 439–446. [Google Scholar] [CrossRef]
- Coates, D.J.; Carstairs, S.; Hamley, V.L. Evolutionary patterns and genetic structure in localized and widespread species in the Stylidium caricifolium complex (Stylidiaceae). Am. J. Bot. 2003, 90, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Wulff, A.S.; Hollingsworth, P.M.; Ahrends, A.; Jaffré, T.; Veillon, J.M.; L’Huillier, L.; Fogliani, B. Conservation Priorities in a Biodiversity Hotspot: Analysis of narrow endemic plant species in New Caledonia. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Hamrick, J.L.; Godt, M.J. Allozyme diversity in plant species. In Plant Population Genetics, Breeding and Genetic Resources; Brown, A.H.D., Clegg, M.T., Kahler, A.L., Weir, B.S., Eds.; Sinauer Associates: Sunderland, MA, USA, 1989; pp. 43–63. [Google Scholar]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Rymer, P.D.; Morris, E.C.; Richardson, B.J. Breeding system and population genetics of the vulnerable plant Dillwynia tenuifolia (Fabaceae). Austral Ecol. 2002, 27, 241–248. [Google Scholar] [CrossRef]
- Godt, M.J.W.; Caplow, F.; Hamrick, J.L. Allozyme diversity in the federally threatened golden paintbrush, Castilleya levisecta (Scrophulariaceae). Conserv. Genet. 2005, 6, 87–99. [Google Scholar] [CrossRef]
- Templeton, A.R.; Read, B. Inbreeding: One word, several meanings, much confusion. In Conservation Genetics; Loeschke, J.T., Jain, S.K., Eds.; Birkhäuser Verlag: Basel, Switzerland, 1994; pp. 91–105. [Google Scholar]
- Clarke, L.J.; Jardine, D.I.; Byrne, M.; Shepherd, K.; Lowe, A.J. Significant population genetic structure detected for a new and highly restricted species of Atriplex (Chenopodiaceae) from Western Australia, and implications for conservation management. Aust. J. Bot. 2012, 60, 32–41. [Google Scholar] [CrossRef]
- Vekemans, X.; Hardy, O. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 2004, 13, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 2004, 13, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Karron, J.D.; Linhart, Y.B.; Chaulk, C.A.; Robertson, C.A. Genetic structure of populations of geographically restricted and widespread species of Astragalus (Fabaceae). Am. J. Bot. 1988, 75, 1114–1119. [Google Scholar] [CrossRef]
- Filippov, E.G.; Andronova, E.V. Genetic differentiation in plants of the genus Cypripedium from Russia inferred from allozyme data. Genetika 2011, 47, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Nicolè, F.; Tellier, F.; Vivat, A.; Till-Bottraud, I. Conservation unit status inferred for plants by combining interspecific crosses and AFLP. Conserv. Genet. 2007, 8, 1273–1285. [Google Scholar] [CrossRef]
- Solórzano, S.; Dávila, P. Identification of conservation units of Mammillaria crucigera (Cactaceae): Perspectives for the conservation of rare species. Plant Ecol. Divers. 2005, 8, 559–569. [Google Scholar] [CrossRef]
- Gibson, A.C.; Nobel, P.S. The Cactus Primer; Harvard University Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Arias-Montes, S.; Gama-López, S.; Guzmán-Cruz, L.U. Cactaceae, A.L. Juss. In Flora del Valle de Tehuacán-Cuicatlán; Fascículo 14; Universidad Nacional Autónoma de México: Mexico City, Mexico, 1997. (In Spanish) [Google Scholar]
- International Union for Conservation of the Nature (IUCN). The IUCN Red List of Threatened Species. Available online: http://www.iucnredlist.org/ (accessed on 7 October 2016).
- Guzmán-Cruz, L.U.; Arias-Montes, S.; Dávila, P. Catálogo de Cactáceas Mexicanas; Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Distrito Federal, Mexico, 2007. (In Spanish) [Google Scholar]
- Solórzano, S.; Cuevas-Alducin, P.D.; Gómez-García, V.; Dávila, P. Genetic diversity and conservation of Mammillaria huitzilopochtli and M. supertexta, two threatened species endemic of the semiarid region of central Mexico. Rev. Mex. Biodivers. 2014, 85, 565–575. [Google Scholar] [CrossRef]
- Solórzano, S.; Téllez, O.; Álvarez-Espino, R.; Dávila, P. Unidades genéticas para la conservación de Mammillaria (Cactaceae). Fitotecnica 2016. under review (In Spanish) [Google Scholar]
- Macías-Arrastio, F.F. Diversidad y Estructura Genética Poblacional de Mammillaria solisioides Backeb. Especie Endémica de la Mixteca de Oaxaca y Puebla. Bachelor Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 21 March 2014. [Google Scholar]
- Cruz-Santos, A. Evaluación de la Diversidad Genética Poblacional de Mammillaria albiflora (Cactaceae): Especie Endémica del Estado de Guanajuato, México. Bachelor Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 8 April 2015. [Google Scholar]
- Quezada-Ramírez, S. Análisis de la Diversidad Genética de Mammillaria rekoi Britton & Rose (Cactaceae: Especie Endémica del Estado de Guanajuato, México. Bachelor Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 1 April 2016. [Google Scholar]
- López-Ortiz, N.M. Diversidad y Estructura Genética Poblacional de Mammillaria zephyranthoides (Cactaceae): Una Especie Endémica de México. Bachelor Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 24 January 2014. [Google Scholar]
- Fitz Maurice, B.; Fitz Maurice, W.A.; Sánchez, E.; Guadalupe-Martínez, J.; Bárcenas-Luna, R. Mammillaria albiflora. In The IUCN Red List of Threatened Species 2013: e.T40824A2934715; IUCN Global Species Programme Red List Unit: Cambridge, UK, 2013; Available online: http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T40824A2934715.en (accessed on 8 August 2016).
- Solórzano, S.; Téllez, O; Arias, S.; Dávila, P. The ecologic evaluation of the conservation status of Mammillaria albifora (Cactaceae). in preparation.
- Frankham, R. Relationships of genetic variation to population size in wildlife. Conserv. Biol. 1996, 10, 1500–1508. [Google Scholar] [CrossRef]
- Karron, J.D. Patterns of genetic variation and breeding systems in rare plants species. In Genetics and Conservation of Rare Plants; Falk, D.A., Holsinger, K.E., Eds.; Oxford University Press: New York, NY, USA, 1991; pp. 87–98. [Google Scholar]
- Comisión Nacional del Agua (CNA). Databases. 2016. Available online: http://smn.cna.gob.mx (accessed on 23 September 2016). (In Spanish)
- Zamudio, S. Diversidad de ecosistemas del Estado de Guanajuato. In La Biodiversidad en Guanajuato: Estudio de Estado; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio)/Instituto de Ecología del Estado de Guanajuato (IEE): Mexico City, Mexico, 2012; Volume II, pp. 21–55. (In Spanish) [Google Scholar]
- Solórzano, S.; Cortés-Palomec, A.C.; Ibarra, A.; Dávila, P.; Oyama, K. Isolation, characterization and cross-amplification of polymorphic microsatellite loci in the threatened endemic Mammillaria crucigera. Mol. Ecol. Res. 2009, 9, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Van Oosterhout, C.; Hutchinson, B.; Wills, D.; Shipley, P. Microchecker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Res. 2004, 4, 535–538. [Google Scholar]
- Pritchard, J.A.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GenAlEx V.6, Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. The Australian National University: Canberra, Australia, 2015. Available online: http://www.anu.edu.au/BoZo/GenAlEx/ (accessed on 6 September 2016).
- Lewis, P.; Zaykin, D. Genetic Data Analysis: Computer Program for the Analysis of Allelic Data. 2001. Available online: http://lewis.eeb.uconn.edu/lewishome/software.html (accessed on 12 October 2016).
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 7.0.18. Molecular Evolutionary Genetics Analysis. 1993–2016. Available online: http://www.megasoftware.net/home (accessed on 4 April 2015).
- Dieringer, D.; Schlötterer, C. Microsatellite Analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Resour. 2003, 3, 167–169. [Google Scholar] [CrossRef]
- Manni, F.; Guérard, E.; Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by “Monmonier’s algorithm”. Hum. Biol. 2004, 76, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Sokal, R.R.; Rohlf, J.L. Biometry, 3rd ed.; Freeman: New York, NY, USA, 1995. [Google Scholar]
- Cornuet, J.M.; Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1996, 144, 2001–2014. [Google Scholar] [PubMed]
- Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 1989, 123, 597–601. [Google Scholar] [PubMed]
- Frankham, R. Conservation genetics. Annu. Rev. Genet. 1995, 29, 305–327. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, N.; Chevalet, C. Detecting past changes of effective population size. Evol. Appl. 2014, 7, 663–681. [Google Scholar] [CrossRef] [PubMed]
- Allendorf, F.W. Genetic drift and the loss of the alleles versus heterozygosity. Zoo Biol. 1986, 5, 181–190. [Google Scholar] [CrossRef]
Locus Name | °T | Allele Size Variation | NT | NEA | HO | HE | FIS | p |
---|---|---|---|---|---|---|---|---|
MamVTC1 | 58 | 177–193 | 4 | 1.5 | 0.25 | 0.33 | 0.24 | 0.000 |
MamVTC2 | 60 | 154–183 | 4 | 2.9 | 0.44 | 0.50 | 0.12 | 0.010 |
MamVTC5 | 57 | 181–194 | 6 | 1.6 | 0.34 | 0.38 | 0.11 | 0.080 |
MamVTC6 | 60 | 166–265 | 5 | 3.2 | 0.42 | 0.47 | 0.10 | 0.012 |
MamVTC7 | 56 | 150–225 | 5 | 4.3 | 0.61 | 0.67 | 0.09 | 0.16 |
MamVTC8 | 60 | 147–183 | 7 | 1.9 | 0.44 | 0.48 | 0.08 | 0.004 |
MamVTC9 | 60 | 163–165 | 3 | 1.1 | 0.10 | 0.13 | 0.23 | 0.001 |
MamVTC10 | 56 | 125–141 | 5 | 1.4 | 0.18 | 0.27 | 0.33 | 0.000 |
MamVTC11 | 59 | 218–244 | 6 | 1.4 | 0.24 | 0.31 | 0.22 | 0.001 |
MamVTC12 | 59 | 211–253 | 6 | 0.21 | 0.30 | 0.76 | 0.60 | 0.025 |
Genetic Descriptor/Patch | Patch 1 (20) | Patch 2 (22) | Patch 3 (30) | Patch 4 (24) | Mean |
---|---|---|---|---|---|
HO ± SE | 0.49 ± 0.21 | 0.44 ± 0.16 | 0.35 ± 0.11 | 0.41 ± 0.22 | 0.42 |
HE ± SE | 0.46 ± 0.19 | 0.49 ± 0.09 | 0.37 ± 0.03 | 0.51 ± 0.10 | 0.45 |
FIS ± SE | −0.06 ± 0.03 | 0.10 ± 0.04 | 0.16 ± 0.02 | 0.24 ± 0.06 | 0.11 |
NA ± EE | 5 ± 1.2 | 3.8 ± 1.76 | 4 ± 1.8 | 4.8 ± 1.3 | 4.4 |
AP | 1 | 3 | 2 | 2 | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solórzano, S.; Arias, S.; Dávila, P. Genetics and Conservation of Plant Species of Extremely Narrow Geographic Range. Diversity 2016, 8, 31. https://doi.org/10.3390/d8040031
Solórzano S, Arias S, Dávila P. Genetics and Conservation of Plant Species of Extremely Narrow Geographic Range. Diversity. 2016; 8(4):31. https://doi.org/10.3390/d8040031
Chicago/Turabian StyleSolórzano, Sofia, Salvador Arias, and Patricia Dávila. 2016. "Genetics and Conservation of Plant Species of Extremely Narrow Geographic Range" Diversity 8, no. 4: 31. https://doi.org/10.3390/d8040031
APA StyleSolórzano, S., Arias, S., & Dávila, P. (2016). Genetics and Conservation of Plant Species of Extremely Narrow Geographic Range. Diversity, 8(4), 31. https://doi.org/10.3390/d8040031