Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers
Abstract
:1. Introduction
2. Marker Types and Their Applications
3. Assessment of Genetic Diversity
3.1. Within-Population Genetic Variation Using Genotype Data
3.2. Between-/Among-Population Genetic Variation Using Genotype Data
3.3. Sequence Divergence Using Sequence Alignment Data
4. Forest Tree Population Diversity
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schoen, D.J.; Brown, A.H.D. Intraspecific variation in population gene diversity and effective population-size correlates with the mating system in plants. Proc. Natl. Acad. Sci. USA 1991, 88, 4494–4497. [Google Scholar] [CrossRef]
- Jansson, S.; Ingvarsson, P.K. Cohort-structured tree populations. Heredity 2010, 105, 331–332. [Google Scholar] [CrossRef]
- Food and Agriulture Organization of the United Nations. Report of the 14th Regular Session of the Commission on Genetic Resources for Food and Agriculture. Available online: http://www.fao.org/docrep/meeting/028/mg468e.pdf (accessed on 16 February 2014).
- Haines, R. Biotechnology in Forest Tree Improvement: With Special Reference to Developing Countries, 1st ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1994; p. 230. [Google Scholar]
- Lapinjoki, S.; Tammisola, J.; Kauppinen, V.; Wright, A.; Vihera-Aarnie, A.; Hagqvist, R.; Sundquist, J.; Martimo, T. The Finnish project for genetic mapping and its applications in breeding, biotechnology and research of white birch. In Proceedings of the Sixth Meeting of the International Conifer Biotechnology Working Group, Raleigh, NC, USA, 23 April 1992.
- Strauss, S.H.; Lande, R.; Namkoong, G. Limitations of molecular-marker-aided selection in forest tree breeding. Can. J. Forest Res. 1992, 22, 1050–1061. [Google Scholar] [CrossRef]
- Grattapaglia, D.; Resende, M.D.V. Genomic selection in forest tree breeding. Tree Genet. Genomes 2011, 7, 241–255. [Google Scholar] [CrossRef]
- Resende, M.D.V.; Resende, M.F.R., Jr.; Sansaloni, C.P.; Petroli, C.D.; Missiaggia, A.A.; Aguiar, A.M.; Abad, J.M.; Takahashi, E.K.; Rosado, A.M.; Faria, D.A.; et al. Genomic selection for growth and wood quality in Eucalyptus: Capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 2012, 194, 116–128. [Google Scholar] [CrossRef]
- Jain, S.K.; Allard, R.W. Population studies in predominantly self-pollinated species, 1. Evidence for heterozygote advantage in a closed population of barley. Proc. Natl. Acad. Sci. USA 1960, 46, 1371–1377. [Google Scholar] [CrossRef]
- Brown, A.H.D. Isozymes, plant population genetic structure and genetic conservation. Theor. Appl. Genet. 1978, 52, 145–157. [Google Scholar]
- Andersen, J.R.; Lubberstedt, T. Functional markers in plants. Trends Plant Sci. 2003, 8, 554–560. [Google Scholar] [CrossRef]
- Brown, A.H.D. Enzyme polymorphism in plant-populations. Theor. Popul. Biol. 1979, 15, 1–42. [Google Scholar] [CrossRef]
- Ritland, K.; Jain, S. A Comparative-study of floral and electrophoretic variation with life-history variation in Limnanthes-alba (Limnanthaceae). Oecologia 1984, 63, 243–251. [Google Scholar] [CrossRef]
- Ritland, K.; Meagher, L.D.; Edwards, D.G.W.; El-Kassaby, Y.A. Isozyme variation and the conservation genetics of Garry oak. Can. J. Bot. 2005, 83, 1478–1487. [Google Scholar] [CrossRef]
- Doligez, A.; Joly, H.I. Genetic diversity and spatial structure within a natural stand of a tropical forest tree species, Carapa procera (Meliaceae), in French Guiana. Heredity 1997, 79, 72–82. [Google Scholar] [CrossRef]
- El-Kassaby, Y.; Ritland, K. Impact of selection and breeding on the genetic diversity in Douglas-fir. Biodivers. Conserv. 1996, 5, 795–813. [Google Scholar] [CrossRef]
- El-Kassaby, Y.A. Domestication and genetic diversity—Should we be concerned? Forest. Chron. 1992, 68, 687–700. [Google Scholar] [CrossRef]
- Chaisurisri, K.; El-Kassaby, Y.A. Genetic diversity in a seed production population vs. natural-populations of sitka spruce. Biodivers. Conserv. 1994, 3, 512–523. [Google Scholar] [CrossRef]
- El-Kassaby, Y.A. Genetic variation within and among conifer populations: Review and evaluation of methods. In Biochemical Markers in the Population Genetics of Forest Trees; Fineschi, S., Malvolti, M.E., Cannata, F., Hattemer, H.H., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1991; pp. 61–76. [Google Scholar]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Szmidt, A.E.; El-Kassaby, Y.A.; Sigurgeirsson, A.; Alden, T.; Lindgren, D.; Hallgren, J.E. Classifying seedlots of Picea-sitchensis and Picea-glauca in zones of introgression using restriction analysis of chloroplast DNA. Theor. Appl. Genet. 1988, 76, 841–845. [Google Scholar] [CrossRef]
- Glaubitz, J.C.; El-Kassaby, Y.A.; Carlson, J.E. Nuclear restriction fragment length polymorphism analysis of genetic diversity in western redcedar. Can. J. Forest Res. 2000, 30, 379–389. [Google Scholar] [CrossRef]
- Mullis, K.; Faloona, F.; Scharf, S.; Saiki, R.; Horn, G.; Erlich, H. Specific enzymatic amplification of DNA in vitro—The polymerase chain-reaction. Cold Spring Harb. Symp. Quant. Biol. 1986, 51, 263–273. [Google Scholar] [CrossRef]
- Williams, J.G.K.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers. Nucleic Acids Res. 1990, 18, 6531–6535. [Google Scholar] [CrossRef]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; Vandelee, T.; Hornes, M.; Frijters, A.; Pot, J.; Peleman, J.; Kuiper, M. AFLP—A new technique for DNA-fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef]
- Zietkiewicz, E.; Rafalski, A.; Labuda, D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain-reaction amplification. Genomics 1994, 20, 176–183. [Google Scholar] [CrossRef]
- Rafalski, A. Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 2002, 5, 94–100. [Google Scholar] [CrossRef]
- Buckler, E.S.; Thornsberry, J.M. Plant molecular diversity and applications to genomics. Curr. Opin. Plant Biol. 2002, 5, 107–111. [Google Scholar] [CrossRef]
- Mondini, L.; Noorani, A.; Pagnotta, M. Assessing plant genetic diversity by molecular tools. Diversity 2009, 1, 19–35. [Google Scholar] [CrossRef]
- Nybom, H.; Weising, K.; Rotter, B. DNA fingerprinting in botany: Past, present, future. Investig. Genet. 2014, 5, 1–35. [Google Scholar] [CrossRef]
- Perez, T.; Albornoz, J.; Dominguez, A. An evaluation of RAPD fragment reproducibility and nature. Mol. Ecol. 1998, 7, 1347–1357. [Google Scholar] [CrossRef]
- Callen, D.F.; Thompson, A.D.; Shen, Y.; Phillips, H.A.; Richards, R.I.; Mulley, J.C.; Sutherland, G.R. Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am. J. Hum. Genet. 1993, 52, 922–927. [Google Scholar]
- Sutton, B.C.S.; Flanagan, D.J.; El-Kassaby, Y.A. A simple and rapid method for estimating representation of species in spruce seedlots using chloroplast DNA restriction-fragment-length-polymorphism. Silvae Genet. 1991, 40, 119–123. [Google Scholar]
- Sutton, B.C.S.; Flanagan, D.J.; Gawley, J.R.; Newton, C.H.; Lester, D.T.; El-Kassaby, Y.A. Inheritance of chloroplast and mitochondrial-dna in Picea and composition of hybrids from introgression zones. Theor. Appl. Genet. 1991, 82, 242–248. [Google Scholar]
- Demesure, B.; Sodzi, N.; Petit, R.J. A set of universal primers for amplification of polymorphic noncoding regions of mitochondrial and chloroplast dna in plants. Mol. Ecol. 1995, 4, 129–131. [Google Scholar] [CrossRef]
- Petit, R.J.; Csaikl, U.M.; Bordacs, S.; Burg, K.; Coart, E.; Cottrell, J.; van Dam, B.; Deans, J.D.; Dumolin-Lapègue, S.; Fineschi, S.; et al. Chloroplast DNA variation in European white oaks—Phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecol. Manag. 2002, 156, 5–26. [Google Scholar] [CrossRef]
- Gamache, I.; Jaramillo-Correa, J.P.; Payette, S.; Bousquet, J. Diverging patterns of mitochondrial and nuclear DNA diversity in subarctic black spruce: Imprint of a founder effect associated with postglacial colonization. Mol. Ecol. 2003, 12, 891–901. [Google Scholar] [CrossRef]
- Comai, L.; Young, K.; Till, B.J.; Reynolds, S.H.; Greene, E.A.; Codomo, C.A.; Enns, L.C.; Johnson, J.E.; Burtner, C.; Odden, A.R.; et al. Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J. 2004, 37, 778–786. [Google Scholar] [CrossRef]
- Parida, S.K.; Kumar, K.A.R.; Dalal, V.; Singh, N.K.; Mohapatra, T. Unigene derived microsatellite markers for the cereal genomes. Theor. Appl. Genet. 2006, 112, 808–817. [Google Scholar] [CrossRef]
- Gilchrist, E.J.; Haughn, G.W.; Ying, C.C.; Otto, S.P.; Zhuang, J.; Cheung, D.; Hamberger, B.; Aboutorabi, F.; Kalynyak, T.; Johnson, L.; et al. Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol. Ecol. 2006, 15, 1367–1378. [Google Scholar] [CrossRef]
- Liewlaksaneeyanawin, C.; Zhuang, J.; Tang, M.; Farzaneh, N.; Lueng, G.; Cullis, C.; Findlay, S.; Ritland, C.E.; Bohlmann, J.; Ritland, K. Identification of COS markers in the Pinaceae. Tree Genet. Genomes 2009, 5, 247–255. [Google Scholar] [CrossRef]
- Bodénès, C.; Chancerel, E.; Gailing, O.; Vendramin, G.G.; Bagnoli, F.; Durand, J.; Goicoechea, P.G.; Soliani, C.; Villani, F.; Mattioni, C.; et al. Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biol. 2012, 12, 153–170. [Google Scholar] [CrossRef]
- Poland, J.A.; Rife, T.W. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 2012, 5, 92–102. [Google Scholar] [CrossRef]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef]
- Zalapa, J.E.; Cuevas, H.; Zhu, H.Y.; Steffan, S.; Senalik, D.; Zeldin, E.; McCown, B.; Harbut, R.; Simon, P. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am. J. Bot. 2012, 99, 193–208. [Google Scholar] [CrossRef]
- Geraldes, A.; Pang, J.; Thiessen, N.; Cezard, T.; Moore, R.; Zhao, Y.; Tam, A.; Wang, S.; Friedmann, M.; Birol, I.; et al. SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing. Mol. Ecol. Resour. 2011, 11, 81–92. [Google Scholar] [CrossRef]
- Chen, C.; Mitchell, S.; Elshire, R.; Buckler, E.; El-Kassaby, Y. Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet. Genomes 2013, 9, 1537–1544. [Google Scholar] [CrossRef]
- Tsai, H.; Howell, T.; Nitcher, R.; Missirian, V.; Watson, B.; Ngo, K.J.; Lieberman, M.; Fass, J.; Uauy, C.; Tran, R.K.; et al. Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol. 2011, 156, 1257–1268. [Google Scholar] [CrossRef]
- Marroni, F.; Pinosio, S.; di Centa, E.; Jurman, I.; Boerjan, W.; Felice, N.; Cattonaro, F.; Morgante, M. Large-scale detection of rare variants via pooled multiplexed next-generation sequencing: Towards next-generation Ecotilling. Plant J. 2011, 67, 736–745. [Google Scholar] [CrossRef]
- Hartl, D.L.; Clark, A.G. Principles of Population Genetics, 4th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2007; p. 652. [Google Scholar]
- Wright, S. Evolution and the Genetics of Populations, Volume 2: The Theory of Gene Frequencies; University of Chicago Press: Chicago, IL, USA, 1984; p. 519. [Google Scholar]
- Raymond, M.; Rousset, F. An exact test for population differentiation. Evolution 1995, 49, 1280–1283. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating f-statistics for the analysis of population-structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995, 139, 1463–1463. [Google Scholar]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes—Application to human mitochondrial-DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar]
- Meirmans, P.G. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 2006, 60, 2399–2402. [Google Scholar] [CrossRef]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef]
- Hedrick, P.W. A standardized genetic differentiation measure. Evolution 2005, 59, 1633–1638. [Google Scholar]
- Lewontin, R.C. The apportionment of human diversity. In Evolutionary Biology, Volume 6; Dobzhansky, T., Hecht, M.K., Steere, W.C., Eds.; Appleton-Century-Crofts: New York, NY, USA, 1972; pp. 381–398. [Google Scholar]
- Jost, L. G(ST) and its relatives do not measure differentiation. Mol.Ecol. 2008, 17, 4015–4026. [Google Scholar] [CrossRef]
- Whitlock, M.C. G'(ST) and D do not replace F(ST). Mol. Ecol. 2011, 20, 1083–1091. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. Available online: http://www.R-project.org (accessed on 16 February 2014).
- Beaumont, M.A.; Nichols, R.A. Evaluating loci for use in the genetic analysis of population structure. Prod. R. Soc. B 1996, 263, 1619–1626. [Google Scholar]
- Eveno, E.; Collada, C.; Guevara, M.A.; Leger, V.; Soto, A.; Diaz, L.; Léger, P.; González-Martínez, S.C.; Cervera, M.T.; Plomion, C.; et al. Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Mol. Biol. Evol. 2008, 25, 417–437. [Google Scholar]
- Kimura, M. Number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 1969, 61, 893–903. [Google Scholar]
- Ohta, T. Mutational pressure as main cause of molecular evolution and polymorphism. Nature 1974, 252, 351–354. [Google Scholar] [CrossRef]
- Tajima, F. Evolutionary relationship of DNA-sequences in finite populations. Genetics 1983, 105, 437–460. [Google Scholar]
- Kreitman, M.E.; Aguade, M. Excess polymorphism at the Adh locus in Drosophila-melanogaster. Genetics 1986, 114, 93–110. [Google Scholar]
- Tajima, F. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar]
- Fu, Y.X.; Li, W.H. Statistical tests of neutrality of mutations. Genetics 1993, 133, 693–709. [Google Scholar]
- Fay, J.C.; Wu, C.I. Hitchhiking under positive Darwinian selection. Genetics 2000, 155, 1405–1413. [Google Scholar]
- Zeng, K.; Fu, Y.X.; Shi, S.; Wu, C.-I. Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 2006, 174, 1431–1439. [Google Scholar] [CrossRef]
- McDonald, J.H.; Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 1991, 351, 652–654. [Google Scholar] [CrossRef]
- Hudson, R.R.; Kreitman, M.; Aguade, M. A test of neutral molecular evolution based on nucleotide data. Genetics 1987, 116, 153–159. [Google Scholar]
- Rozas, J.; Sanchez-DelBarrio, J.C.; Messeguer, X.; Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19, 2496–2497. [Google Scholar] [CrossRef]
- Hamrick, J.L.; Godt, M.J.W.; Sherman-Broyles, S.L. Factors influencing levels of genetic diversity in woody plant species. New Forest. 1992, 6, 95–124. [Google Scholar] [CrossRef]
- Mueller-Starck, G.; Baradat, P.; Bergmann, F. Genetic variation within European tree species. New Forest. 1992, 6, 23–47. [Google Scholar] [CrossRef]
- Neale, D.B.; Williams, C.G. Restriction-fragment-length-polymorphism mapping in conifers and applications to forest genetics and tree improvement. Can. J. Forest Res. 1991, 21, 545–554. [Google Scholar] [CrossRef]
- Buschiazzo, E.; Ritland, C.; Bohlmann, J.; Ritland, K. Slow but not low: Genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol. Biol. 2012, 12, 8–21. [Google Scholar] [CrossRef]
- Strauss, S.H.; Hong, Y.P.; Hipkins, V.D. High-levels of population differentiation for mitochondrial-DNA haplotypes in Pinus-radiata, muricata, and attenuata. Theor. Appl. Genet. 1993, 86, 605–611. [Google Scholar] [CrossRef]
- Kremer, A.; Petit, R.J.; Zanetto, A.; Fougere, V.; Ducousso, A.; Wagner, D.B.; Chauvin, C. Nuclear and organelle gene diversity in Quercus robur and Q. petraea. In Genetic Variation in European Populations of Forest Trees; Müller-Starck, G., Ziehe, M., Eds.; Sauerländer’s Verlag: Frankfurt am Main, Germany, 1991; pp. 141–166. [Google Scholar]
- Petit, R.J.; El Mousadik, A.; Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 1998, 12, 844–855. [Google Scholar] [CrossRef]
- Mellick, R.; Rossetto, M.; Allen, C.; Wilson, P.D.; Hill, R.S.; Lowe, A. Intraspecific divergence associated with a biogeographic barrier and climatic models show future threats and long-term decline of a rainforest conifer. The Open Conservat. Biol. J. 2013, 7, 1–10. [Google Scholar] [CrossRef]
- Zaina, G.; Morgante, M. Nucleotide Diversity and Linkage Disequilibrium in Populus nigra. In Proceedings of the XLVIII Italian Society of Agricultural Genetics—SIFV-SIGA Joint Meeting, Lecce, Italy, 15–18 September 2004.
- Garcia-Gil, M.R.; Mikkonen, M.; Savolainen, O. Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris. Mol. Ecol. 2003, 12, 1195–1206. [Google Scholar] [CrossRef]
- Brown, G.R.; Gill, G.P.; Kuntz, R.J.; Langley, C.H.; Neale, D.B. Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc. Natl. Acad. Sci. USA 2004, 101, 15255–15260. [Google Scholar] [CrossRef]
- Ismail, M.; Soolanayakanahally, R.Y.; Ingvarsson, P.K.; Guy, R.D.; Jansson, S.; Silim, S.N.; El-Kassaby, Y.A. Comparative nucleotide diversity across North American and European populus species. J. Mol. Evol. 2012, 74, 257–272. [Google Scholar] [CrossRef]
- Ingvarsson, P.K. Nucleotide polymorphism and linkage disequilbrium within and among natural populations of European Aspen (Populus tremula L., Salicaceae). Genetics 2005, 169, 945–953. [Google Scholar] [CrossRef]
- Mosca, E.; Eckert, A.J.; Liechty, J.D.; Wegrzyn, J.L.; la Porta, N.; Vendramin, G.G.; Neale, D.B. Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests. Evol. Appl. 2012, 5, 762–775. [Google Scholar] [CrossRef]
- Gailing, O.; Vornam, B.; Leinemann, L.; Finkeldey, R. Genetic and genomic approaches to assess adaptive genetic variation in plants: Forest trees as a model. Physiol.Plant. 2009, 137, 509–519. [Google Scholar] [CrossRef]
- Derory, J.; Scotti-Saintagne, C.; Bertocchi, E.; le Dantec, L.; Graignic, N.; Jauffres, A.; Casasoli, M.; Chancerel, E.; Bodénès, C.; Alberto, F.; et al. Contrasting relations between diversity of candidate genes and variation of bud burst in natural and segregating populations of European oaks. Heredity 2010, 105, 401–411. [Google Scholar] [CrossRef]
- Eckert, A.J.; Wegrzyn, J.L.; Pande, B.; Jermstad, K.D.; Lee, J.M.; Liechty, J.D.; Tearse, B.R.; Krutovsky, K.V.; Neale, D.B. Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas Fir (Pseudotsuga menziesii var. menziesii). Genetics 2009, 183, 289–298. [Google Scholar] [CrossRef]
- Hamilton, J.A.; Lexer, C.; Aitken, S.N. Genomic and phenotypic architecture of a spruce hybrid zone (Picea sitchensis × P. glauca). Mol. Ecol. 2013, 22, 827–841. [Google Scholar] [CrossRef]
- De la Torre, A.R.; Wang, T.; Jaquish, B.; Aitken, S.N. Adaptation and exogenous selection in a Picea glauca × Picea engelmannii hybrid zone: Implications for forest management under climate change. New Phytol. 2014, 201, 687–699. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Porth, I.; El-Kassaby, Y.A. Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers. Diversity 2014, 6, 283-295. https://doi.org/10.3390/d6020283
Porth I, El-Kassaby YA. Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers. Diversity. 2014; 6(2):283-295. https://doi.org/10.3390/d6020283
Chicago/Turabian StylePorth, Ilga, and Yousry A. El-Kassaby. 2014. "Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers" Diversity 6, no. 2: 283-295. https://doi.org/10.3390/d6020283
APA StylePorth, I., & El-Kassaby, Y. A. (2014). Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers. Diversity, 6(2), 283-295. https://doi.org/10.3390/d6020283