Water Quality Assessment and Spatial Heterogeneity Distribution of Freshwater Shellfish in Wutong River
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of Sampling Areas and Distribution of Sampling Sites
2.2. Sample Collection and Test Method
2.3. Data Processing and Evaluation Method
2.3.1. Water Quality Evaluation Methods
2.3.2. Method for Calculating the Occurrence Rate of Shellfish Species
2.3.3. Correlation Analysis Methods for Water Quality Parameters
2.3.4. Data Processing
3. Results
3.1. The Water Environment Situation of Wutong River
3.2. Correlation Analysis of Indus River Pollution Indicators
3.3. Single Factor Evaluation Method
3.4. Nemero Pollution Index Method
3.5. Distribution of Shellfish Species in Sampling Area
4. Discussion
4.1. The Spatial Variation in Water Quality in Wutong River
4.2. The Impact of Agricultural Pollution and Climate Change on the Water Quality
4.3. Influence of Water Conservancy Project Construction on Water Quality
4.4. Seasonal Variation in Precipitation and Its Impact on River Water Quality
4.5. Threatened Factors and Protection Countermeasures of Shellfish Species in Wutong River
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Han, J.C.; Zhou, Y.; Wang, X.; Ikram, R.M.A.; Zhao, X.; Huang, Y. Application of novel deep learning model for high-frequency water quality prediction in multi-station river networks. J. Environ. Chem. Eng. 2025, 13, 119673. [Google Scholar] [CrossRef]
- Kim, M.; Jang, M.; Choong, C.E.; Han, J. Historical and future water quality risks driven by climate change: Strategic management and overcoming challenges. Water Res. 2026, 288, 124774. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Liu, C.; Wang, Y.; Li, M. Variation of net anthropogenic phosphorus inputs (NAPI) and riverine phosphorus flfluxes in seven major river basins in China. Sci. Total Environ. 2020, 742, 140514. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Qin, D.; Gao, L.; Hao, Q.; Chen, Z.; Wang, P.; Tang, S.; Wu, S.; Jiang, H.; Qiu, W. Distribution, contents and health risk assessment of heavy metal(loid)s in fifish from difffferent water bodies in Northeast China. RSC Adv. 2019, 9, 33130–33139. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Feng, J.; Nian, W.; Jiang, H.; Zhang, J.; Ma, B. Investigation on the status quo of fishery resources in Wutong River, the first tributary of Songhua River. Chin. J. Fish. 2018, 31, 15–19. [Google Scholar]
- Xue, D.; Yan, J.; Sun, D.; Wang, H.; Jin, X.; Li, H.; Wu, L.; Huang, T. Community structure of macrobenthos in Chagan Lake and its relationship with environmental factors. Chin. J. Fish. 2020, 33, 61–67. [Google Scholar]
- Wang, H.; Huang, X.; Wang, J.; Xue, D.; Wang, Q.; Sun, D.; Huang, T. Effects of agricultural non-point source pollution on plankton and benthic community structure in a reservoir in Moridawa Banner. Chin. J. Fish. 2019, 32, 55–62. [Google Scholar]
- Han, Y.; Fan, Y.; Yang, P.; Wang, X.; Wang, Y.; Tian, J.; Xu, L.; Wang, C. Net anthropogenic nitrogen inputs (NANI) index application in Mainland China. Geoderma 2014, 213, 87–94. [Google Scholar] [CrossRef]
- Han, Y.; Yu, X.; Wang, X.; Wang, Y.; Tian, J.; Xu, L.; Wang, C. Net anthropogenic phosphorus inputs (NAPI) index application in Mainland China. Chemosphere 2013, 90, 329–337. [Google Scholar] [CrossRef]
- Xiang, R.; Wang, L.; Li, H.; Tian, Z.; Zheng, B. Temporal and spatial variation in water quality in the Three Gorges Reservoir from 1998 to 2018. Sci. Total Environ. 2021, 768, 144866. [Google Scholar] [CrossRef]
- Takeya, L.A.; Haque, K.E.; Ahmed, S.; Siddique, M.A.B.; Moniruzzaman, M.; Uddin, M.R.; Rahman, M.S. Hydrochemistry, quality, and potential health risk appraisal of arsenic-enriched groundwater in central-west Bangladesh using the integrated water quality index and Monte Carlo simulation. Sci. Total Environ. 2025, 1003, 180707. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shi, B.; Wang, C.; Cheng, H.; Wang, C.; Ma, X.; Yan, K.; Chen, Y. Effects of compound probiotics on the growth of Conger myriaster, water quality parameters, and microbial communities in industrial recirculating aquaculture systems. Aquac. Rep. 2025, 45, 103138. [Google Scholar] [CrossRef]
- Shanmugasundaram, K.; Selvam, A.; Kuo, C.Y.; Govindasamy, M. Exploring water quality in villupuram district: Correlation analysis of physicochemical parameters and health risks for domestic consumption. J. Water Process Eng. 2025, 76, 108278. [Google Scholar] [CrossRef]
- Filippini, G.; Dafforn, K.A.; Bugnot, A.B. Shellfish as a bioremediation tool: A review and meta-analysis. Environ. Pollut. 2023, 316, 12061. [Google Scholar] [CrossRef]
- Martínez-Guijarro, R.; Paches, M.; Romero, I.; Aguado, D. Enrichment and contamination level of trace metals in the Mediterranean marine sediments of Spain. Sci. Total Environ. 2019, 693, 133566. [Google Scholar] [CrossRef]
- Feng, J.C.; Sun, L.; Yan, J. Carbon sequestration via shellfish farming: A potential negative emissions technology. Renew. Sustain. Energy Rev. 2023, 171, 113018. [Google Scholar] [CrossRef]
- Feil, G.W.; Pogue, R.; Cumann, F.; Cumann, E.; Rowan, N. Implications for the seafood industry, consumers and the environment arising from contamination of shellfish with pharmaceuticals, plastics and potentially toxic elements: A case study from Irish waters with a global orientation. Sci. Total Environ. 2022, 844, 157067. [Google Scholar]
- Lai, G.; Sun, J.; Xiao, J.; Li, Z.; Du, J.; Wen, X.; Xu, X.; Meng, L.; Li, X.; Zhong, K. Assessing the effect of human activity on sediment load in the Second Songhua River Basin, Northeast China, based on the SWAT model. Reg. Stud. Mar. Sci. 2025, 91, 104491. [Google Scholar] [CrossRef]
- Lin, C.; Chen, J.; Xu, J.; Li, Y.; Liu, Y.; Lin, H. Distribution and risk assessment of heavy metals in the economic fish of the Southern Fujian Province. Environ. Toxicol. Pharmacol. 2022, 92, 103834. [Google Scholar] [CrossRef]
- Samaei, F.; Emami, H.; Lakzian, A. Assessing soil quality of pasture and agriculture land uses in Shandiz county, northwestern Iran. Ecol. Indic. 2022, 139, 108974. [Google Scholar] [CrossRef]
- Fehrenbach, G.W.; Murphy, E.; Tanoeiro, J.R.; Pogue, R.; Major, I. Monitoring water contamination through shellfish: A systematic review of biomarkers, species selection, and host response. Ecotoxicol. Environ. Saf. 2025, 295, 118120. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiong, Y.; Wang, T.; Zhang, J.; Feng, L.; Gao, G. Seaweed and shellfish mariculture as nature-based solutions: Mitigating nutrient pollution from coastal fish mariculture and sewage. Mar. Pollut. Bull. 2026, 222, 118793. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan-Babaei, F.; Mirchooli, F.; Mohammadi, M.; Nosrati, K.; Egli, M. Tracking the origin of trace metals in a watershed by identifying fifingerprints of soils, landscape and river sediments. Sci. Total Environ. 2022, 835, 155583. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Strokal, M.; Kroeze, C.; Ma, L.; Shen, Z.; Wu, J.; Chen, X.; Shi, X. Seasonality in river export of nitrogen: A modelling approach for the Yangtze River. Sci. Total Environ. 2019, 671, 1282–1292. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, M.; Song, K.; Wei, Y.; Zhang, S. Spatiotemporal analysis of anthropogenic phosphorus flfluxes in China. Sci. Total Environ. 2020, 721, 137588. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, S.; Tang, L.; Pan, X.; Pu, X.; Li, R.; Shen, C. Contribution of heavy metal in driving microbial distribution in a eutrophic river. Sci. Total Environ. 2019, 712, 136295. [Google Scholar] [CrossRef]
- Wang, J.; Sui, Q.; Lyu, S.; Huang, Y.; Huang, S.; Wang, B.; Xu, D.; Zhao, W.; Kong, M.; Zhang, Y.; et al. Source apportionment of phenolic compounds based on a simultaneous monitoring of surface water and emission sources: A case study in a typical region adjacent to Taihu Lake watershed. Sci. Total Environ. 2020, 722, 137946. [Google Scholar] [CrossRef]
- Akbarzadeh, Z.; Maavara, T.; Slowinski, S.; Van Cappellen, P. Effects of Damming on River Nitrogen Fluxes: A Global Analysis. Glob. Biogeochem. Cycles 2019, 33, 1339–1357. [Google Scholar] [CrossRef]







| Serial Number | Sampling Location | E | N | Altitude |
|---|---|---|---|---|
| S1 | Wutong River | 130.780925 | 47.208516 | 100.03 |
| S2 | Heli River | 130.704288 | 47.220546 | 100.01 |
| S3 | Xilin River | 130.126523 | 47.568648 | 99.49 |
| S4 | Guanmenzuizi Dam | 130.376435 | 47.607897 | 99.37 |
| S5 | Downstream of Guanmenzuizi Dam | 130.318617 | 47.642394 | 99.20 |
| Sampling Point | Time | Water Quality Category | Exceeded Indicator |
|---|---|---|---|
| S1 | Summer | IV | Volatile phenol, TN |
| Autumn | III | ||
| S2 | Summer | IV | TN |
| Autumn | III | ||
| S3 | Summer | IV | Volatile phenol, Fe, Mn |
| Autumn | III | ||
| S4 | Summer | IV | CODMn, Fe, Mn |
| Autumn | III | ||
| S5 | Summer | IV | Volatile phenol, Fe, Mn |
| Autumn | III |
| Parameter | C/(mg/L) | ω |
|---|---|---|
| DO | 5 | 0.0004 |
| TP | 0.2 | 0.0106 |
| TN | 1 | 0.0021 |
| NH3-N | 1 | 0.0021 |
| CODMn | 6 | 0.0004 |
| Petroleum | 0.05 | 0.0426 |
| Volatile phenol | 0.005 | 0.4261 |
| Category | I | II | III | IV | V |
|---|---|---|---|---|---|
| Nemero index | p ≤ 0.58 | 0.58 < p ≤ 0.67 | 0.67 < p ≤ 1 | 1 < p ≤ 4.67 | 15.01 ≤ p |
| Sampling Time | S1 | S2 | S3 | S4 | S5 |
|---|---|---|---|---|---|
| June | IV | III | IV | III | IV |
| October | III | III | II | I | III |
| Species | S1 | S2 | S3 | S4 | S5 | Incidence (%) |
|---|---|---|---|---|---|---|
| Cipangopaludina cahayensis | 16 | 14 | 13 | 12 | 11 | 66 |
| Cipangopaludina ussuriensis | 4 | 5 | 3 | 2 | 2 | 16 |
| Viviparus chui | 5 | 6 | 7 | 7 | 5 | 30 |
| Parafossarulus striatulus | 3 | 2 | 4 | 3 | 3 | 15 |
| Bithynia fuchsiana | 4 | 2 | 5 | 5 | 5 | 21 |
| Radix swinhoei | 4 | 6 | 6 | 3 | 3 | 22 |
| Radix auricularia | 4 | 3 | 3 | 5 | 2 | 17 |
| Radix ovata | 3 | 3 | 2 | 1 | 3 | 12 |
| Semisulcospira amurensis | 11 | 8 | 12 | 6 | 9 | 46 |
| Sphaerium lacustre | 3 | 5 | 3 | 3 | 2 | 16 |
| Gyraulus convexiusculus | 3 | 2 | 0 | 0 | 1 | 6 |
| Polypylis hemisphaerula | 0 | 1 | 1 | 1 | 0 | 3 |
| Unio douglasiae | 15 | 16 | 13 | 17 | 15 | 76 |
| Anodonta woodiana | 5 | 3 | 3 | 6 | 1 | 18 |
| Hyriopsis cumingii | 2 | 1 | 0 | 2 | 2 | 7 |
| Average | 5.47 | 5.13 | 5.00 | 4.87 | 4.20 | 24.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, H.; Wang, L.; Huo, T.; Zhang, W. Water Quality Assessment and Spatial Heterogeneity Distribution of Freshwater Shellfish in Wutong River. Diversity 2026, 18, 7. https://doi.org/10.3390/d18010007
Wang H, Wang L, Huo T, Zhang W. Water Quality Assessment and Spatial Heterogeneity Distribution of Freshwater Shellfish in Wutong River. Diversity. 2026; 18(1):7. https://doi.org/10.3390/d18010007
Chicago/Turabian StyleWang, Haitao, Le Wang, Tangbin Huo, and Wang Zhang. 2026. "Water Quality Assessment and Spatial Heterogeneity Distribution of Freshwater Shellfish in Wutong River" Diversity 18, no. 1: 7. https://doi.org/10.3390/d18010007
APA StyleWang, H., Wang, L., Huo, T., & Zhang, W. (2026). Water Quality Assessment and Spatial Heterogeneity Distribution of Freshwater Shellfish in Wutong River. Diversity, 18(1), 7. https://doi.org/10.3390/d18010007
