Foraging Environment Shapes the Gut Microbiota of Two Crane Species in the Yellow River Delta Wetland
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Sample Treatment
2.3. Data Analysis
3. Results
3.1. Sequence Statistics and ASV Cluster Analysis
3.2. α-Diversity Analysis of the Microbiota Among Four Groups
3.3. β-Diversity Analysis of the Microbiota Among Four Groups
3.4. Analysis of Microbial Composition Characteristics
3.5. SourceTracker Analysis
3.6. LEfSe Analysis
3.7. Functional Predictive Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Baeckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-Bacterial Mutualism in the Human Intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Davidson, G.L.; Wiley, N.; Cooke, A.C.; Johnson, C.N.; Fouhy, F.; Reichert, M.; de la Hera, I.; Crane, J.M.S.; Kulahci, I.G.; Ross, R.P.; et al. Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird. Sci. Rep. 2019, 10, 20783. [Google Scholar] [CrossRef] [PubMed]
- Shapira, M. Gut Microbiotas and Host Evolution: Scaling Up Symbiosis. Trends Ecol. Evol. 2016, 31, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Waite, D.W.; Taylor, M.W. Characterizing the avian gut microbiota: Membership, driving influences, and potential function. Front. Microbiol. 2014, 5, 223. [Google Scholar] [CrossRef]
- Hird, S.M. Evolutionary Biology Needs Wild Microbiomes. Front. Microbiol. 2017, 8, 725. [Google Scholar] [CrossRef]
- García-Amado, M.A.; Shin, H.; Sanz, V.; Lentino, M.; Domínguez-Bello, M.G. Comparison of gizzard and intestinal microbiota of wild neotropical birds. PLoS ONE 2018, 13, e0194857. [Google Scholar] [CrossRef]
- Laviad-Shitrit, S.; Izhaki, I.; Lalzar, M.; Halpern, M. Comparative Analysis of Intestine Microbiota of Four Wild Waterbird Species. Front. Microbiol. 2019, 10, 1911. [Google Scholar] [CrossRef]
- Videvall, E.; Ruiz-Limón, P.; Martínez-Padilla, J.; Moreno-Indias, I.; Canal, D.; Muriel, J. Fine-scale variation in the gut microbiome of the European pied flycatcher (Ficedula hypoleuca) in central Spain. Ardeola 2025, 73, 23–42. [Google Scholar] [CrossRef]
- Maraci, Ö.; Antonatou-Papaioannou, A.; Jünemann, S.; Castillo-Gutiérrez, O.; Busche, T.; Kalinowski, J.; Caspers, B.A. The gut microbial composition is species-specific and individual-specific in two species of estrildid finches, the Bengalese finch and the zebra finch. Front. Microbiol. 2021, 12, 619141. [Google Scholar] [CrossRef]
- Liukkonen, M.; Muriel, J.; Martínez-Padilla, J.; Nord, A.; Pakanen, V.M.; Rosivall, B.; Tilgar, V.; van Oers, K.; Grond, K.; Ruuskanen, S. Seasonal and environmental factors contribute to the variation in the gut microbiome: A large-scale study of a small bird. J. Anim. Ecol. 2024, 93, 1475–1492. [Google Scholar] [CrossRef]
- Bodawatta, K.H.; Kleková, I.; Kleka, J.; Puejová, K.; Koane, B.; Poulsen, M.; Jønsson, K.A.; Sam, K. Specific gut bacterial responses to natural diets of tropical birds. Sci. Rep. 2022, 12, 713. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.T.; Duan, T.F.; Wang, L.; Wu, J.W.; Meng, Y.J.; Bao, D.L.; Gao, L.; Liu, L. Comparative analysis of the gut bacteria and fungi in migratory demoiselle cranes (Grus virgo) and common cranes (Grus grus) in the Yellow River Wetland, China. Front. Microbiol. 2024, 15, 1341512. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.P.; Li, L.Q.; Shao, Y.; Li, W.J.; Li, Y.Z.; Wang, H.G.; Wang, Y.; Zhou, Z.; Wang, J.; Shang, S. Comparative analysis of intestinal flora community composition and diversity of Anas platyrhynchos and Anser fabalisin the Yellow River Delta. Anim. Biol. 2024, 74, 435–451. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; NISC Comparative Sequencing Program; Bouffard, G.G.; Blakesley, R.W.; Murray, P.R.; et al. Topographical and temporal diversity of the human skin microbiome. Science 2009, 324, 1190–1192. [Google Scholar] [CrossRef]
- Dubois, P.C.; Trynka, G.; Franke, L.; Hunt, K.A.; Romanos, J.; Curtotti, A.; Zhernakova, A.; Heap, G.A.; Adány, R.; Aromaa, A.; et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 2010, 42, 295–302. [Google Scholar] [CrossRef]
- Hird, S.M.; Carstens, B.C.; Cardiff, S.W.; Dittmann, D.L.; Brumfield, R.T. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater). PeerJ 2014, 2, e321. [Google Scholar] [CrossRef]
- Fuirst, M.; Veit, R.; Hahn, M.; Dheilly, N.; Thorne, L.H. Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS ONE 2018, 13, e0209200. [Google Scholar] [CrossRef]
- Dong, Y.; Xiang, X.; Zhao, G.; Song, Y.; Zhou, L. Variations in gut bacterial communities of hooded crane (Grus monacha) over spatial-temporal scales. PeerJ 2019, 7, e7045. [Google Scholar] [CrossRef]
- Xiang, X.; Zhang, F.; Fu, R.; Yan, S.; Zhou, L. Significant Differences in Bacterial and Potentially Pathogenic Communities Between Sympatric Hooded Crane and Greater White-Fronted Goose. Front. Microbiol. 2019, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Sanders, J.G.; Delsuc, F.; Metcalf, J.; Amato, K.; Taylor, M.W.; Mazel, F.; Lutz, H.L.; Winker, K.; Graves, G.R.; et al. Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence between Birds and Bats. mBio 2020, 11, e02901-19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.S.; Wang, Y.J.; Zhang, M.; Yao, Y.F.; Tian, H.; Sang, Z.L.; Wang, L.; Xu, H. Structural changes in the gut microbiota community of the black-necked crane (Grus nigricollis) in the wintering period. Arch. Microbiol. 2021, 203, 6203–6214. [Google Scholar] [CrossRef] [PubMed]
- Davidson, G.L.; Somers, S.E.; Wiley, N.; Johnson, C.N.; Reichert, M.S.; Ross, R.P.; Stanton, C.; Quinn, J.L. A time-lagged association between the gut microbiome, nestling growth and nestling survival in wild great tits. Cold Spring Harb. Lab. 2020, 90, 989–1003. [Google Scholar]
- Cho, H.; Lee, W.Y. Interspecific comparison of the fecal microbiota structure in three Arctic migratory bird species. Ecol. Evol. 2020, 10, 5582–5594. [Google Scholar] [CrossRef]
- Pepke, M.L.; Hansen, S.B.; Limborg, M.T. Unraveling host regulation of gut microbiota through the epigenome-microbiome axis. Trends Microbiol. 2024, 32, 1229–1240. [Google Scholar] [CrossRef]
- Flint, H.J.; Bayer, E.A.; Rincon, M.T.; Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 2008, 6, 121–131. [Google Scholar] [CrossRef]
- Wu, H.; Wu, F.T.; Zhou, Q.H.; Zhao, D.P. Comparative Analysis of Gut Microbiota in Captive and Wild Oriental White Storks: Implications for Conservation Biology. Front. Microbiol. 2021, 12, 649466. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gao, X.; Liu, Y.; Zhou, B.; Yu, J.; Li, L.; Wu, Q.; Wang, J.; Shang, S. Foraging Environment Shapes the Gut Microbiota of Two Crane Species in the Yellow River Delta Wetland. Diversity 2026, 18, 14. https://doi.org/10.3390/d18010014
Gao X, Liu Y, Zhou B, Yu J, Li L, Wu Q, Wang J, Shang S. Foraging Environment Shapes the Gut Microbiota of Two Crane Species in the Yellow River Delta Wetland. Diversity. 2026; 18(1):14. https://doi.org/10.3390/d18010014
Chicago/Turabian StyleGao, Xiaodong, Yunpeng Liu, Bo Zhou, Jingyi Yu, Lei Li, Qingming Wu, Jun Wang, and Shuai Shang. 2026. "Foraging Environment Shapes the Gut Microbiota of Two Crane Species in the Yellow River Delta Wetland" Diversity 18, no. 1: 14. https://doi.org/10.3390/d18010014
APA StyleGao, X., Liu, Y., Zhou, B., Yu, J., Li, L., Wu, Q., Wang, J., & Shang, S. (2026). Foraging Environment Shapes the Gut Microbiota of Two Crane Species in the Yellow River Delta Wetland. Diversity, 18(1), 14. https://doi.org/10.3390/d18010014

