Assessing Human Trampling Effects in Alpine Vegetation: A Case Study from the Belianske Tatras
Abstract
1. Introduction
2. Materials and Methods
2.1. The Area of Interest
2.2. Experimental Block Design
- The cover (%) of vascular plant species (E1 layer), mosses, and lichens (E0 layer): Only green photosynthetic material was included in the cover estimates (visual estimates of the highest cover perpendicular to each subplot, and visual estimates of the cover of each species). Lichens and mosses were determined by a lichenologist and a bryologist.
- Bare ground cover (%): Bare ground in the form of either mineral or soil (visual estimates of the top cover of bare ground perpendicular to each subplot, and visual estimates of the ground cover of the surface).
- Litter cover (%): This included litter from recently trampled plants (visual estimates of the top litter cover perpendicular to each subplot, and visual estimates of litter cover per subplot).
3. Results
3.1. Question 1: Regenerated Plant Communities Are More Resistant to Trampling than Native Ones
3.2. Question 2: Individual Species Found in Different Communities Defend Themselves with the Same Resistance to Trampling
3.3. Question 3: Trampling Can Cause Species Disappearance or Extinction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NPP | National nature reserve |
RC | Relative cover |
References
- Li, Y.; Chen, K.; Liu, Z.; Cao, G. Short-term impacts of trampling on selected soil and vegetation properties of alpine grassland in Qilian Mountain National Park, China. Glob. Ecol. Conserv. 2022, 36, e02148. [Google Scholar] [CrossRef]
- Hill, W.; Pickering, C.M. Vegetation associated with different walking track types in the Kosciuszko alpine area, Australia. J. Environ. Manag. 2006, 78, 24–34. [Google Scholar] [CrossRef]
- Growcock, A.J. Impacts of Camping and Trampling on Australian Alpine and Subalpine Vegetation 2005. Ph.D. Thesis, Griffith University, Gold Coast, Australia, 2006. [Google Scholar]
- Pickering, C.M.; Growcock, A.J. Impacts of experimental trampling on tall alpine herbfields and subalpine grasslands in the Australian Alps. J. Environ. Manag. 2009, 91, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Siemann, E.; Deng, B.; Wang, S.; Zhang, L. Soil microbial community responses to soil chemistry modifications in alpine meadows following human trampling. Catena 2020, 194, 104717. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Soil compaction and growth of woody plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Yüksek, Y. Effect of visitor activities on surface soil environmental conditions and aboveground herbaceous biomass in Ayder natural park. Clean Soil Air Water 2009, 37, 170–175. [Google Scholar] [CrossRef]
- Marion, J.L.; Cole, D.N. Spatial and temporal variation in soil and vegetation impacts on campsites. J. Appl. Ecol. 1996, 6, 520–530. [Google Scholar] [CrossRef]
- Arocena, J.M.; Arocena, S.K.; Nepal, M. Rutherford Visitor-induced changes in the chemical composition of soils in backcountry areas of Mt Robson Provincial Park, British Columbia, Canada. J. Environ. Manag. 2006, 79, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Meinecke, E.P. A Report on the Effect of Excessive Tourist Travel on the California Redwood Parks; California State Printing Office: Sacramento, CA, USA, 1928.
- Bates, G.H. The vegetation of footpaths, sidewalks, cart-tracks and gateways. J. Ecol. 1935, 23, 470–487. [Google Scholar] [CrossRef]
- Kutiel, P.; Zhevelev, Y. Recreational use impact on soil and vegetation at picnic sites in Aleppo pine forests on Mount Carmel, Israel. Isr. J. Plant Sci. 2001, 49, 49–56. [Google Scholar] [CrossRef]
- Roovers, P.; Verheyen, K.; Hermy, M.; Gulinck, H. Experimental trampling and vegetation recovery in some forest and heathland communities. Appl. Veg. Sci. 2004, 7, 111–118. [Google Scholar] [CrossRef]
- Speight, M.C. Outdoor Recreation and Its Ecological Effects: A Bibliography and Review; University College: London, UK, 1973; Volume 4. [Google Scholar]
- Dale, D.; Weaver, T. Trampling effects on vegetation of the trail corridors of north Rocky Mountain forests. J. Appl. Ecol. 1974, 11, 767–772. [Google Scholar] [CrossRef]
- Cole, D.N. Minimizing conflict between recreation and nature conservation. In Ecology of Greenways: Design and Function of Linear Conservation Areas; Smith, D.S., Hellmund, P.C., Eds.; University of Minnesota Press: Minneapolis, MN, USA, 1993; pp. 105–122. [Google Scholar]
- Tomczyk, A.M.; Ewertowski, M. Quantifying short-term surface changes on recreational trails: The use of topographic surveys and ‘digital elevation models of differences’ (DODs). Geomorphology 2013, 183, 58–72. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Ewertowski, M. Planning of recreational trails in protected areas: Application of regression tree analysis and geographic information systems. Appl. Geogr. 2013, 40, 129–139. [Google Scholar] [CrossRef]
- Komarkova, V. Alpine Vegetation of the Indian Peaks Area, Front Range, Colorado Rocky Mountains. Ph.D. Dissertation, University of Colorado, Boulder, CO, USA, 1976; 655p. [Google Scholar]
- Zachar, D. Soil Erosion; Elsevier: New York, NY, USA, 2011. [Google Scholar]
- Fidelus, J. Slope transformations within tourist footpaths in the northern and southern parts of the Western Tatra Mountains (Poland, Slovakia). Z. Für Geomorphol. 2016, 60, 139–162. [Google Scholar] [CrossRef]
- Klug, B.; Scharfetter-Lehrl, G.; Scharfetter, E. Effects of trampling on vegetation above the timberline in the eastern Alps, Austria. Arct. Antarct. Alp. Res. 2002, 34, 377–388. [Google Scholar] [CrossRef]
- Hill, R.; Pickering, C.M. Differences in resistance of three subtropical vegetation types to experimental trampling. J. Environ. Manag. 2009, 90, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.N. Impacts of hiking and camping on soils and vegetation: A review. In Environmental Impacts of Ecotourism: Ecotourism Series; Buckley, R., Ed.; CABI Publishing: New York, NY, USA, 2004; pp. 41–60. [Google Scholar]
- Pescott, O.L.; Stewart, G.B. Assessing the impact of human trampling on vegetation: A systematic review and meta-analysis of experimental evidence. PeerJ 2014, 2, e360. [Google Scholar] [CrossRef]
- Cole, D.N.; Bayfield, N.G. Recreational trampling of vegetation: Standard experimental procedures. Biol. Conserv. 1993, 63, 209–215. [Google Scholar] [CrossRef]
- Kycko, M.; Zagajewski, B.; Lavender, S.; Romanowska, E.; Zwijacz-Kozica, M. The impact of tourist traffic on the condition and cell structures of alpine swards. Remote Sens. 2018, 10, 220. [Google Scholar] [CrossRef]
- Hertlová, B.; Popelka, O.; Zeidler, M.; Banaš, M. Alpine plant communities responses to simulated mechanical disturbances of tourism, case study from the High Sudetes Mts. J. Environ. Eng. Landsc. Manag. 2016, 7, 16–21. [Google Scholar]
- Willard, B.E.; Cooper, D.J.; Forbes, B.C. Natural regeneration of alpine tundra vegetation after human trampling: A 42-year data set from Rocky Mountain National Park, Colorado, USA. Arct. Antarct. Alp. Res. 2007, 39, 177–183. [Google Scholar]
- Chardon, N.I.; Rixen, C.; Wipf, S.; Doak, D.F. Human trampling disturbance exerts different ecological effects at contrasting elevational range limits. J. Appl. Ecol. 2019, 56, 1389–1399. [Google Scholar] [CrossRef]
- Piscová, V.; Ševčík, M.; Hreško, J.; Petrovič, F. Effects of a Short-Term Trampling Experiment on Alpine Vegetation in the Tatras, Slovakia. Sustainability 2021, 13, 2750. [Google Scholar] [CrossRef]
- Kliment, J.; Valachovič, M. Plant Communities of Slovakia 4.—Alpine Vegetation (Rastlinné Spoločenstvá Slovenska 4.—Vysokohorská Vegetácia, in Slovak Language); VEDA: Bratislava, Slovakia, 2007; 388p. [Google Scholar]
- Piscová, V. Changes in the Vegetation of the Tatras at Selected Locations Influenced by Humans; VEDA, Slovak Academy of Sciences: Bratislava, Slovakia, 2011; 300p, ISBN 978-80-224-1220-9. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, version 4.4.2; R Foundation for Statistical Computing: Vienna, Austria, 2022. Available online: https://www.R-project.org/ (accessed on 3 March 2025).
- Kent, M. Vegetation Description and Data Analysis: A practical Approach, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2012; Available online: http://www.amazon.co.uk/dp/0471490938 (accessed on 13 March 2025).
- Cole, D.N. Experimental trampling of vegetation. II. Predictors of resistance and resilience. J. Appl. Ecol. 1995, 32, 215–224. [Google Scholar] [CrossRef]
- Cole, D.N. Trampling disturbance of high-elevation vegetation, Wind river mountains, Wyoming, USA. Arct. Antarct. Alp. Res. 2002, 34, 365–376. [Google Scholar] [CrossRef]
- Odling-Smee, J.F.; Erwin, D.H.; Palkovacs, E.P.; Feldman, M.W.; Laland, K.N. Niche construction theory: A practical guide for ecologists. Q. Rev. Biol. 2013, 88, 3–28. [Google Scholar] [CrossRef]
- Odling-Smee, F.J.; Laland, K.N.; Feldman, M.W. Niche Construction: The Neglected Process in Evolution; Princeton University Press: Oxfordshire, UK, 2003. [Google Scholar]
- Chapin, F.S.; Chapin, M.C. Revegetation of an arctic disturbed site by native tundra species. J. Appl. Ecol. 1980, 17, 449–456. [Google Scholar] [CrossRef]
- Karlsson, P.S. In situ photosynthetic performance of four coexsisting dwarf shrubs in relation to light in a subarctic woodland. Funct. Ecol. 1989, 3, 485–487. [Google Scholar] [CrossRef]
- Pesonen, E.M. Kokeellisen Virkistyskäytön Kasvillisuusvaikutukset Oulangan Kansallispuistossa. Master’s Thesis, Department of Biology, University of Oulu, Oulu, Finland, 2003. [Google Scholar]
- Jahns, H.M. Sanikkaiset, Sammalet Ja Jäkälät; Otava: Helsinki, Finland, 1996. [Google Scholar]
- Törn, A.; Rautio, J.; Norokorpi, Y.; Tolvanen, A. Revegetation after shortterm trampling a subalpine heath vegetation. Ann. Bot. Fenn. 2006, 43, 129–138. [Google Scholar]
- Callaghan, T.V.; Emanuelsson, U. Population structure and processes of tundra plants and vegetation. In The Population Stucture of Vegetation; White, J., Ed.; Junk: Dordrecht, The Netherlands, 1985; pp. 399–439. [Google Scholar]
- Ukkola, R. Trampling tolerance of plants and ground cover in finnish lapland, with an example from the pyhätunturi national park. In Environmental Aspects of the Timberline in Finland and in the Polish Carpathians; Heikkinen, H., Obrebska-Starkel, B., Tuhkanen, S., Eds.; Uniwersytet Jagiellonski: Kraków, Poland, 1995; pp. 91–110. [Google Scholar]
- Rydgren, K.; Økland, R.H.; Økland, T. Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. IV. Effects of experimental fine-scale disturbance. Oikos 1998, 82, 5–19. [Google Scholar] [CrossRef]
- Liddle, M.J. A theoretical relationship between the primary productivity of vegetation and its ability to tolerate trampling. Biol. Conserv. 1975, 8, 251–255. [Google Scholar] [CrossRef]
- Hreško, J.; Bugár, G.; Petrovič, F. Changes of vegetation and soil cover in alpine zone due to anthropogenic and geomorphological processes. Landf. Anal. 2009, 18, 39–43. [Google Scholar]
Area | Kopské Saddleback | Predné Kopské Saddleback | Vyšné Kopské Saddleback |
---|---|---|---|
Community | Juncetum trifidi | Junco trifidi-Callunetum vulgaris | Seslerietum tatrae |
Geological substrate | limestone, dolomite, and slate | limestone, dolomite, and slate | limestone, dolomite, and slate |
Soil | rankers and dystric cambisols | rankers and dystric cambisols | carbonate lithosoil |
Orientation of the relief | NW | NE | SW |
Slope | 22° | 4° | 39° |
Altitude | 1754 m ASL | 1778 m ASL | 1924 m ASL |
Carrying capacity of the nearest trail | low | moderate | moderate |
Characteristic | Plant Association | Year | 75 Tourists per Day | 225 Tourists per Day |
---|---|---|---|---|
higher plants 42%, mosses 41%, lichens 39% | Juncetum trifidi | 2008 | 27.54% | 35.88% |
hemicryptophytes 88%, woody chamaephytes 12% | Juncetum trifidi | 2022 | 50.12% | 33.27% |
higher plants 66%, mosses 13%, lichens 31% | Junco trifidi-Callunetum vulgaris | 2008 | 53.92% | 35.13% |
hemicryptophytes 86%, woody chamaephytes 14% | Junco trifidi-Callunetum vulgaris | 2022 | 54.70% | 39.14% |
higher plants 86%, mosses 23% | Seslerietum tatrae | 2008 | 54.25% | 25.17% |
hemicryptophytes 67%, woody and herbaceous chamaephytes 26%, terophytes 4%, geophytes 3% | Seslerietum tatrae | 2022 | 48.45% | 61.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piscová, V.; Ševčík, M.; Sedlák, A.; Hreško, J.; Petrovič, F. Assessing Human Trampling Effects in Alpine Vegetation: A Case Study from the Belianske Tatras. Diversity 2025, 17, 474. https://doi.org/10.3390/d17070474
Piscová V, Ševčík M, Sedlák A, Hreško J, Petrovič F. Assessing Human Trampling Effects in Alpine Vegetation: A Case Study from the Belianske Tatras. Diversity. 2025; 17(7):474. https://doi.org/10.3390/d17070474
Chicago/Turabian StylePiscová, Veronika, Michal Ševčík, Andrej Sedlák, Juraj Hreško, and František Petrovič. 2025. "Assessing Human Trampling Effects in Alpine Vegetation: A Case Study from the Belianske Tatras" Diversity 17, no. 7: 474. https://doi.org/10.3390/d17070474
APA StylePiscová, V., Ševčík, M., Sedlák, A., Hreško, J., & Petrovič, F. (2025). Assessing Human Trampling Effects in Alpine Vegetation: A Case Study from the Belianske Tatras. Diversity, 17(7), 474. https://doi.org/10.3390/d17070474