Microplastics Alter Growth and Reproduction Strategy of Scirpus mariqueter by Modifying Soil Nutrient Availability
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Collection
2.2. Microplastic Preparation
2.3. Experimental Design
2.4. Soil and Plant Measurements
2.5. Statistical Analysis
3. Results
3.1. Effects of Microplastics on Biomass and Vegetative Traits of S. mariqueter
3.2. Effects of Microplastics on Reproductive Traits and Allocation of S. mariqueter
3.3. Effects of Microplastics on Soil Physicochemical Properties
3.4. Correlation Between Soil Physicochemical Properties and S. mariqueter Traits
4. Discussion
4.1. Microplastics Affect S. mariqueter Biomass and Vegetative Growth
4.2. Microplastics Modulate Reproductive Strategies of S. mariqueter
4.3. Microplastics Indirectly Affect Plant Growth via Soil Physicochemical Properties
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tirkey, A.; Upadhyay, L.S.B. Microplastics: An overview on separation, identification and characterization of microplastics. Mar. Pollut. Bull. 2021, 170, 112604. [Google Scholar] [CrossRef]
- Lin, H.; Yuan, Y.; Jiang, X.; Zou, J.-P.; Xia, X.; Luo, S. Bioavailability quantification and uptake mechanisms of pyrene associated with different-sized microplastics to Daphnia magna. Sci. Total Environ. 2021, 797, 149201. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Jin, T.; Zou, T.; Xu, L.; Xi, B.; Xu, D.; He, J.; Xiong, L.; Tang, C.; Peng, J. Current progress on plastic/microplastic degradation: Fact influences and mechanism. Environ. Pollut. 2022, 304, 119159. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, E.; Minor, E.C.; Schreiner, K. Microplastic abundance and composition in western Lake Superior as determined via microscopy, Pyr-GC/MS, and FTIR. Environ. Sci. Technol. 2018, 52, 1787–1796. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, R.; Sharma, S.; Mukherjee, S.; Bolan, S.; Shrivastava, A.; Hettiarachchi, M.; Siddique, K.H.; Bolan, N. Microplastics pollution modulating soil biological health–A review. Soil Use Manag. 2025, 41, e70009. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, L.; Pan, S.; Li, G.; Liu, H.; Xiu, W.; Gong, L.; Zhao, J.; Zhang, G.; Yang, D. Can microplastics mediate soil properties, plant growth and carbon/nitrogen turnover in the terrestrial ecosystem? Ecosyst. Health Sustain. 2022, 8, 2133638. [Google Scholar] [CrossRef]
- Liu, S.; Suo, Y.; Wang, J.; Chen, B.; Wang, K.; Yang, X.; Zhu, Y.; Zhang, J.; Lu, M.; Liu, Y. Impact of Polystyrene Microplastics on Soil Properties, Microbial Diversity and Solanum lycopersicum L. Growth in Meadow Soils. Plants 2025, 14, 256. [Google Scholar] [CrossRef]
- Perillo, G.; Wolanski, E.; Cahoon, D.R.; Hopkinson, C.S. Coastal Wetlands: An Integrated Ecosystem Approach; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Ward, N.D.; Megonigal, J.P.; Bond-Lamberty, B.; Bailey, V.L.; Butman, D.; Canuel, E.A.; Diefenderfer, H.; Ganju, N.K.; Goñi, M.A.; Graham, E.B. Representing the function and sensitivity of coastal interfaces in Earth system models. Nat. Commun. 2020, 11, 2458. [Google Scholar] [CrossRef]
- Wang, J.; Yu, G.; Han, L.; Yao, Y.; Sun, M.; Yan, Z. Ecosystem carbon exchange across China’s coastal wetlands: Spatial patterns, mechanisms, and magnitudes. Agric. For. Meteorol. 2024, 345, 109859. [Google Scholar] [CrossRef]
- Hansen, V.D.; Nestlerode, J.A. Carbon sequestration in wetland soils of the northern Gulf of Mexico coastal region. Wetl. Ecol. Manag. 2014, 22, 289–303. [Google Scholar] [CrossRef]
- Barr, J.G.; Troxler, T.G.; Najjar, R.G. Understanding Coastal Carbon Cycling by Linking Top-Down and Bottom-Up Approaches. Eos Trans. Am. Geophys. Union 2014, 95, 315. [Google Scholar] [CrossRef]
- Li, N.; Wu, M.; Zhang, Y.; Yuan, W.; Wu, J.; Shao, X. A review on microplastics pollution in coastal wetlands. Watershed Ecol. Environ. 2023, 5, 24–37. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Q.; Adams, C.A.; Sun, Y.; Zhang, S. Effects of microplastics on soil properties: Current knowledge and future perspectives. J. Hazard. Mater. 2022, 424, 127531. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Lozano, Y.M.; Rillig, M.C. Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Front. Environ. Sci. 2021, 9, 675803. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Lwanga, E.H.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro-and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, C.; Liu, X.; Zhao, Y.; Wang, Y.; Zhang, Y.; Liu, J. Distribution Characteristics and Sources of Microplastics in Inland Wetland Ecosystem Soils. Water 2025, 17, 231. [Google Scholar] [CrossRef]
- Hu, B.; Guo, P.; Han, S.; Jin, Y.; Nan, Y.; Deng, J.; He, J.; Wu, Y.; Chen, S. Distribution characteristics of microplastics in the soil of mangrove restoration wetland and the effects of microplastics on soil characteristics. Ecotoxicology 2022, 31, 1120–1136. [Google Scholar] [CrossRef]
- Mészáros, E.; Bodor, A.; Kovács, E.; Papp, S.; Kovács, K.; Perei, K.; Feigl, G. Impacts of plastics on plant development: Recent advances and future research directions. Plants 2023, 12, 3282. [Google Scholar] [CrossRef]
- Kumari, A.; Rajput, V.D.; Mandzhieva, S.S.; Rajput, S.; Minkina, T.; Kaur, R.; Sushkova, S.; Kumari, P.; Ranjan, A.; Kalinitchenko, V.P. Microplastic pollution: An emerging threat to terrestrial plants and insights into its remediation strategies. Plants 2022, 11, 340. [Google Scholar] [CrossRef]
- Tang, K.H.D. Effects of microplastics on agriculture: A mini-review. Asian J. Environ. Ecol. 2020, 13, 130170. [Google Scholar] [CrossRef]
- Chen, Z.; Carter, L.J.; Banwart, S.A.; Pramanik, D.D.; Kay, P. Multifaceted effects of microplastics on soil-plant systems: Exploring the role of particle type and plant species. Sci. Total Environ. 2024, 954, 176641. [Google Scholar] [CrossRef]
- Muthuvairavasamy, R. Microplastics in the Biotic Systems. In Microplastics: Footprints on the Earth and Their Environmental Management; Springer: Berlin/Heidelberg, Germany, 2022; pp. 55–57. [Google Scholar]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.; An, Y.-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef]
- Li, L.; Li, D.; Kong, R.; Ren, Z.; Liu, L.; Zhu, Y.; Sun, Y.; Peng, N.; He, J.; Ji, Y. Strategies in growth and reproduction of the native endangered plant species Scripus mariqueter and the driving factors in a coastal salt marsh wetland, eastern China. Acta Oecol. 2024, 122, 103979. [Google Scholar] [CrossRef]
- Wang, T.; Hu, M.; Song, L.; Yu, J.; Liu, R.; Wang, S.; Wang, Z.; Sokolova, I.M.; Huang, W.; Wang, Y. Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China. Environ. Pollut. 2020, 266, 115137. [Google Scholar] [CrossRef]
- Dalvand, M.; Hamidian, A.H. Occurrence and distribution of microplastics in wetlands. Sci. Total Environ. 2023, 862, 160740. [Google Scholar] [CrossRef]
- Flumignan, D.L.; Adami, M.; Faria, R.T.d. Área foliar de folhas íntegras e danificadas de cafeeiro determinada por dimensões foliares e imagem digital. Cof. Sci. 2008, 3, 1–6. [Google Scholar]
- Miller, R.O.; Kissel, D.E. Comparison of soil pH methods on soils of North America. Soil Sci. Soc. Am. J. 2010, 74, 310–316. [Google Scholar] [CrossRef]
- Bittelli, M. Measuring soil water content: A review. HortTechnology 2011, 21, 293–300. [Google Scholar] [CrossRef]
- Sattolo, T.M.S.; Otto, R.; Mariano, E.; Kamogawa, M.Y. Adaptation and validation of colorimetric methods in determining ammonium and nitrate on tropical soils. Commun. Soil Sci. Plant Anal. 2016, 47, 2547–2557. [Google Scholar] [CrossRef]
- Song, S.-h.; Wen, Y.-j.; Zhang, J.-y.; Wang, H. Rapid spectrophotometric measurement with a microplate reader for determining phosphorus in NaHCO3 soil extracts. Microchem. J. 2019, 146, 210–213. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, K.-S.; Woo, H.-J. Characteristics of total carbon and total organic carbon using elemental analyzer in Hyung-do intertidal zone sediments. Econ. Environ. Geol. 2012, 45, 673–684. [Google Scholar] [CrossRef]
- Xu, H.; Chen, C.; Pang, Z.; Zhang, G.; Zhang, W.; Kan, H. Effects of microplastics concentration on plant root traits and biomass: Experiment and meta-analysis. Ecotoxicol. Environ. Saf. 2024, 285, 117038. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Rillig, M.C.; Bing, H.; Cui, Q.; Qiu, T.; Cui, Y.; Penuelas, J.; Liu, B.; Bian, S.; Monikh, F.A. Microplastic pollution promotes soil respiration: A global-scale meta-analysis. Glob. Change Biol. 2024, 30, e17415. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Li, W.; Yang, W.; Zhao, G.; Lyu, J. Effects of microplastics on the porosity and connectivity with different soil textures: Based on CT scanning. Res. Sq. 2023, 317, 137762. [Google Scholar] [CrossRef]
- Paudel, P.; Kumar, R.; Pandey, M.K.; Paudel, P.; Subedi, M. Exploring the impact of micro-plastics on soil health and ecosystem dynamics: A comprehensive review. J. Exp. Biol. Agric. Sci. 2024, 12, 163–174. [Google Scholar] [CrossRef]
- Frene, J.P.; Pandey, B.K.; Castrillo, G. Under pressure: Elucidating soil compaction and its effect on soil functions. Plant Soil 2024, 502, 267–278. [Google Scholar]
- Wiersum, L. The relationship of the size and structural rigidity of pores to their penetration by roots. Plant Soil 1957, 9, 75–85. [Google Scholar] [CrossRef]
- Farow, D.; Lebel, R.; Crossman, J.; Proctor, C. Root traits of soybeans exposed to polyethylene films, polypropylene fragments, and biosolids. Environ. Pollut. 2024, 363, 125141. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Huang, J.; Yang, Y. Unveiling the impact of microplastics and nanoplastics on vascular plants: A cellular metabolomic and transcriptomic review. Ecotoxicol. Environ. Saf. 2024, 279, 116490. [Google Scholar] [CrossRef]
- Hasan, M.M.; Jho, E.H. Effect of microplastics on the germination and growth of terrestrial plants. J. Korean Soc. Environ. Eng. 2022, 44, 375–382. [Google Scholar] [CrossRef]
- Ya, H.; Jiang, B.; Xing, Y.; Zhang, T.; Lv, M.; Wang, X. Recent advances on ecological effects of microplastics on soil environment. Sci. Total Environ. 2021, 798, 149338. [Google Scholar] [CrossRef]
- Di Mauro, R.; Kupchik, M.J.; Benfield, M.C. Abundant plankton-sized microplastic particles in shelf waters of the northern Gulf of Mexico. Environ. Pollut. 2017, 230, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Codogno, B.; Wei, W.; Zhang, X.; Gao, J.; Dokuchaeva, V.; Ma, L.; Wu, P.; Yu, Q.; Guo, W. Investigating the Potential Effects of Microplastics on the Growth and Functional Traits in Two Aquatic Macrophytes (Myriophyllum spicatum and Phragmites australis) in Mesocosm Experiments. Water 2024, 17, 14. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Kim, J.G. The optimal balance between sexual and asexual reproduction in variable environments: A systematic review. J. Ecol. Environ. 2016, 40, 1–18. [Google Scholar] [CrossRef]
- Li, F.; Xie, Y.-H.; Qin, Y.-Y. Adaptive strategies of wetland plants in salt stress environment. Chin. J. Ecol. 2009, 28, 314. [Google Scholar]
- Zhang, S.; Yuan, R.; Peng, J.; Liu, R.; Liu, H.; Qu, J. The Mechanism of a Submerged Aquatic Plant to Micro-Nano Plastics Stress in Ecological Constructed Wetland. Chem. Eng. J. 2023, 480, 147756. [Google Scholar] [CrossRef]
- Carvallo, G.O.; Muñoz-Michea, V. Polypropylene fragments block pollen–pistil interactions and reduce seed production in a monkeyflower species. Environ. Sci. Technol. Lett. 2024, 11, 426–432. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Caesaria, P.U.; Rillig, M.C. Microplastics of different shapes increase seed germination synchrony while only films and fibers affect seed germination velocity. Front. Environ. Sci. 2022, 10, 1017349. [Google Scholar] [CrossRef]
- Li, Y.; Yang, G.; Yu, C.; Lei, X.; Xing, X.; Ma, X.; Sun, Y. The Impact of Microplastic Concentration and Particle Size on the Germination and Seedling Growth of Pisum sativum L. Agron. J. 2024, 14, 923. [Google Scholar] [CrossRef]
- Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 2019, 226, 774–781. [Google Scholar] [CrossRef]
- Rana, A.K.; Thakur, M.K.; Saini, A.K.; Mokhta, S.K.; Moradi, O.; Rydzkowski, T.; Alsanie, W.F.; Wang, Q.; Grammatikos, S.; Thakur, V.K. Recent developments in microbial degradation of polypropylene: Integrated approaches towards a sustainable environment. Sci. Total Environ. 2022, 826, 154056. [Google Scholar] [CrossRef]
- Blanco, A.; Högy, P.; Zikeli, S.; Pignata, M.L.; Rodriguez, J.H. Assessment of elevated CO2 concentrations and heat stress episodes in soybean cultivars growing in heavy metal polluted soils: Crop nutritional quality and food safety. Environ. Pollut. 2022, 303, 119123. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hua, Y.; Sun, J.; Ahmad, S.; He, X.; Zhuo, Y.; Tang, J. Carbon Cycling in Wetlands Under the Shadow of Microplastics: Challenges and Prospects. Toxics 2025, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; Zhou, P.; Li, H.; Wan, Q.; Lu, Y.; Li, B. Differential impacts of microplastics on carbon and nitrogen cycling in plant-soil systems: A meta-analysis. Sci. Total Environ. 2024, 948, 174655. [Google Scholar] [CrossRef]
- Fang, X.Z.; Fang, S.Q.; Ding, Y.; Ma, J.W.; Ye, Z.Q.; Liu, D.; Zhao, K.L. Microplastic exposure inhibits nitrate uptake and assimilation in wheat plants. Environ. Pollut. 2024, 360, 124626. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Liu, L.; Zhang, Y.; Fu, W.; Liu, X.; Wang, Q.; Tanveer, M.; Huang, L. Microplastic stress in plants: Effects on plant growth and their remediations. Front. Plant Sci. 2023, 14, 1226484. [Google Scholar] [CrossRef]
- Bakhshaee, A.; Babakhani, P.; Ashiq, M.M.; Bell, K.; Salehi, M.; Jazaei, F. Potential impacts of microplastic pollution on soil–water–plant dynamics. Sci. Rep. 2025, 15, 9784. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Liang, X.; Lu, S.; Ren, J.; Zhang, Y.; Han, Z.; Gao, B.; Sun, K. Effects of microplastics on soil carbon pool and terrestrial plant performance. Carbon Res. 2024, 3, 37. [Google Scholar] [CrossRef]
- Ullah, R.; Tsui, M.T.K.; Chen, H.; Chow, A.; Williams, C.; Ligaba-Osena, A. Microplastics interaction with terrestrial plants and their impacts on agriculture. J. Environ. Qual. 2021, 50, 1024–1041. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yue, L.; Zhao, Y.; Li, J.; Fu, Y.; Deng, H.; Feng, D.; Li, Q.; Yu, H.; Zhang, Y. Changes in bacterial community structures in soil caused by migration and aging of microplastics. Sci. Total Environ. 2022, 848, 157790. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Peng, C.; Hu, S.; Xie, W.; Chen, A.; Liu, T.; Zhang, W. Aging of biodegradable microplastics and their effect on soil properties: Control from soil water. J. Hazard. Mater. 2024, 480, 136053. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A.; Ryo, M.; Bergmann, J. Shaping up: Toward considering the shape and form of pollutants. Environ. Sci. Technol. 2019, 53, 7925–7926. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Gao, J.; Li, J.; Wu, M.; Shao, X.; Li, N. Microplastics Alter Growth and Reproduction Strategy of Scirpus mariqueter by Modifying Soil Nutrient Availability. Diversity 2025, 17, 472. https://doi.org/10.3390/d17070472
Jiang P, Gao J, Li J, Wu M, Shao X, Li N. Microplastics Alter Growth and Reproduction Strategy of Scirpus mariqueter by Modifying Soil Nutrient Availability. Diversity. 2025; 17(7):472. https://doi.org/10.3390/d17070472
Chicago/Turabian StyleJiang, Pengcheng, Jingwen Gao, Junzhen Li, Ming Wu, Xuexin Shao, and Niu Li. 2025. "Microplastics Alter Growth and Reproduction Strategy of Scirpus mariqueter by Modifying Soil Nutrient Availability" Diversity 17, no. 7: 472. https://doi.org/10.3390/d17070472
APA StyleJiang, P., Gao, J., Li, J., Wu, M., Shao, X., & Li, N. (2025). Microplastics Alter Growth and Reproduction Strategy of Scirpus mariqueter by Modifying Soil Nutrient Availability. Diversity, 17(7), 472. https://doi.org/10.3390/d17070472