Mycoforestry with the Saffron Milk Cap (Lactarius deliciosus L.:Fr. S.F. Gray) and Its Potential as a Large-Scale Food Production System
Abstract
1. Introduction
2. L. deliciosus Mycoforestry: General Overview
2.1. What Are Ectomycorrhizal Associations?
2.2. What Is Mycoforestry?
2.3. L. deliciosus
2.4. L. deliciosus Mycoforestry and Its Potential in the UK
2.5. Benefits of Upscaling L. deliciosus Mycoforestry
3. In-Vitro Growth Requirements of L. deliciosus
3.1. Liquid Media
3.2. pH
3.3. Temperature
3.4. Oxygen Concentration
3.5. Effects of Root Exudates, Plant Material and Plant Growth Regulators on the In-Vitro Growth of L. deliciosus
3.5.1. Root Exudates
3.5.2. Effect of Plant Material and Filtrates Not Derived from Roots
4. Nursey Stage and the Production of Inoculated Plants
4.1. Different Types of Inoculation Methods That Have Been Used and Their Success
4.2. Effect of Potting Media on the Inoculation Success and Colonization Intensity of L. deliciosus
5. Long-Term Persistence and Fructification of L. deliciosus in Mycoforestry Plantations
5.1. Impacts of ECM Communities on the Persistence of L. deliciosus in Soils
5.2. Intercropping with Brassicaceae Plants in L. deliciosus Mycoforestry Plantations
5.3. Applications of Mycorrhizal Helper Bacteria (MHB)
5.4. Effects of Soil Type on the Persistence of L. deliciosus
5.5. Impacts of Climate on the Persistence of L. deliciosus
5.6. Effects of Mycophagous Invertebrate Communities on Basidiocarp Productivity
5.7. L. deliciosus Basidiocarp Productivity Within Mycoforestry Plantations
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Disclaimer
Conflicts of Interest
Abbreviations
| ECM | Ectomycorrhizal fungi |
| C | Carbon |
| MHB | Mycorrhizal helper bacteria |
| SSF | Solid-state fermentation |
| BAF | Biotin–aneurin–folic acid |
| PDB | Potato dextrose broth |
| N | Nitrogen |
| RPM | Rotations per minute |
| P | Phosphorus |
| PDA | Potato dextrose agar |
Appendix A
| Article | Optimal Carbon Source |
|---|---|
| Fu et al. [110] | Sucrose |
| Han et al. [111] | Soluble Starch |
| Hu et al. [225] | Soluble starch |
| Li et al. [112] | Maltose |
| Lin and Chen [113] | Soluble starch |
| Su et al. [226] | Soluble starch |
| Wang et al. [121] | Glucose |
| Article | Temperature Range Tested (°C) | Optimal Temperature (°C) |
|---|---|---|
| Xu et al. [109] | 5, 10, 20, 25, 28, 30, 37 and 40 | 25 |
| Zhu et al. [132] | 5, 10, 20, 25, 28, 30, 37 and 40 | 28 |
| Hu et al. [225] | 23, 25, 27, 29 and 31 | 27 |
| Li et al. [158] | 20, 25, 28, 30 and 32 | 28 |
| Wang et al. [227] | 18, 20, 22, 24, 26 and 28 | 26 |
| Xue et al. [228] | 15, 22, 27 and 32 | 27 |
| Zhan and Wei [125] | 15, 20, 25, 30 and 35 | 25 |
| Zhou et al. [229] | 18, 20, 24, 26, 28 and 30 | 26 |
| Zhou et al. [230] | 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37 and 40 | 27 |
| Article | Number of Isolates Tested | Media Used | Optimal pH |
|---|---|---|---|
| Chung [103] | 4 | Solid MMN, PDA and BAF | IF 725004 (BAF = 6.8; MMN = 6.8; PDA = 5.8) IF 1608006 (BAF = 6.3; MMN = 6.8; PDA = 5.8) IF 914002 (BAF = 6.3; MMN = 6.8; PDA = 5.8) IF 936001 (BAF = 5.3; MMN = 5.8; PDA = 5.8) |
| Flores et al. [128] | 4 | Solid BAF | L. deliciosus SM 63.00 (6.5) L. deliciosus PX 252.01 (4.5) L. deliciosus SO.10 (5.5) L. deliciosus Rp.01 (7.0) |
| Guerin-Laguette et al. [60] | 1 | Solid BAF | 6 |
| Han et al. [111] | 1 | Custom PDB | 7 |
| Hu et al. [225] | 1 | Custom PDB | 7 |
| Lazarević et al. [130] | 1 | Liquid MMN | 5.8 |
| Li et al. [158] | 1 | PDA | 5 |
| Li et al. [112] | 1 | Liquid modified Martin’s medium | Single factor experiment = 6 Multifactorial experiment = 8 |
| Olaizola et al. [131] | 1 | Liquid MMN | 8.5 |
| Sanchez et al. [129] | 1 | Solid MMN | 6.5 |
| Torres and honrubia [2] | 1 | Solid Raper, Hagem, MMN, PDA, MMN (+10 g glucose) and 2% malt extract agar | Raper (7.5); Hagem (7–7.5); MMN (6.5); PDA (5.5), MMN (+10 g glucose) (7.5); 2% MEA (7.5) |
| Wang et al. [227] | 1 | PDA | 6 |
| Xu et al. [109] | 1 | Solid and Liquid MMN | 6 |
| Xue et al. [228] | 1 | Custom PDA | 6 |
| Zhou et al. [229] | 1 | 3 different modified PDB media | 8 |
| Zhou et al. [230] | 1 | PDB | 6.5 |
| Zhu et al. [132] | 1 | Solid and liquid MMN | 6.0 |
References
- He, Y.; Xiao, N.; Liu, Y. A preliminary study on semi-artificial cultivation of wild Lactarius pine in Ji’an, Jiangxi Province. Edible Fungi. 2016, 2, 51–52. [Google Scholar] [CrossRef]
- Torres, P.; Honrubia, M. Growth dynamics and characterization of some ectomycorrhizal fungi in culture [Suillus collinitus, Suillus granulatus, Rhizopogon roseolus, Rhizopogon luteolus, Amanita muscaria, Lactarius deliciosus]. Cryptogam. Mycol. Fr. 1991, 12, 183–192. [Google Scholar] [CrossRef]
- Chen, X.; Kang, H.; Bian, Y.B. Advances in studies of edible Lactarius sensu lato. Mycosystema 2018, 37, 1562–1571. [Google Scholar] [CrossRef]
- Díaz, G.; Carrillo, C.; Honrubia, M. Production of Pinus halepensis seedlings inoculated with the edible fungus Lactarius deliciosus under nursery conditions. New For. 2009, 38, 215–227. [Google Scholar] [CrossRef]
- González-Ochoa, A.; de las Heras, J.; Torres, P.; Sánchez-Gómez, E. Mycorrhization of Pinus halepensis Mill. and Pinus pinaster Aiton seedlings in two commercial nurseries. Ann. For. Sci. 2003, 60, 43–48. [Google Scholar] [CrossRef]
- Guerin-Laguette, A.; Butler, R.; Wang, Y. Advances in the Cultivation of Lactarius deliciosus (Saffron Milk Cap) in New Zealand. In Mushrooms, Humans and Nature in a Changing World; Pérez-Moreno, J., Guerin-Laguette, A., Flores Arzú, R., Yu, F.Q., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 141–161. [Google Scholar] [CrossRef]
- Hortal, S.; Pera, J.; Parladé, J. Field persistence of the edible ectomycorrhizal fungus Lactarius deliciosus: Effects of inoculation strain, initial colonization level, and site characteristics. Mycorrhiza 2009, 19, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, J.L.; Wang, Y.; Zambonelli, A.; Hall, I.; Xiong, W.P. The cultivation of Lactarius with edible mushrooms. Ital. J. Mycol. 2021, 50, 63–77. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 2nd ed.; Academic Press: London, UK, 1997. [Google Scholar]
- Timonen, S. Microbial Activity in the Rhizoshere; Manoharachary, C., Singh, J., Eds.; Soil Biology; Springer: Berlin, Germany, 2006; Volume 7, pp. 155–172. [Google Scholar] [CrossRef]
- Brownlee, C.; Duddridge, J.A.; Malibari, A.; Read, D.J. The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. In Tree Root Systems and Their Mycorrhizas; Atkinson, D., Bhat, K.K.S., Coutts, M.P., Mason, P.A., Read, D.J., Eds.; Developments in Plant and Soil Sciences; Springer: Dordrecht, The Netherlands, 1983; pp. 433–443. [Google Scholar] [CrossRef]
- Guerin-Laguette, A. Successes and challenges in the sustainable cultivation of edible mycorrhizal fungi–furthering the dream. Mycoscience 2021, 62, 10–28. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008. [Google Scholar]
- Leake, J.; Johnson, D.; Donnelly, D.; Muckle, G.; Boddy, L.; Read, D. Networks of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 2004, 82, 1016–1045. [Google Scholar] [CrossRef]
- Nehls, U.; Das, A.; Neb, D. Carbohydrate metabolism in ectomycorrhizal symbiosis. In Molecular Mycorrhizal Symbiosis, 1st ed.; Martin, F., Ed.; Wiley: Chichester, UK, 2016; pp. 159–177. [Google Scholar] [CrossRef]
- Kebert, M.; Kostić, S.; Čapelja, E.; Vuksanović, V.; Stojnić, S.; Markić, A.G.; Zlatković, M.; Milović, M.; Galović, V.; Orlović, S. Ectomycorrhizal Fungi Modulate Pedunculate Oak’s Heat Stress Responses through the Alternation of Polyamines, Phenolics, and Osmotica Content. Plants 2022, 11, 3360. [Google Scholar] [CrossRef]
- Ortega, U.; Duñabeitia, M.; Menendez, S.; Gonzalez-Murua, C.; Majada, J. Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes. Tree Physiol. 2004, 24, 65–73. [Google Scholar] [CrossRef]
- Sun, W.; Yang, B.; Zhu, Y.; Wang, H.; Qin, G.; Yang, H. Ectomycorrhizal fungi enhance the tolerance of phytotoxicity and cadmium accumulation in oak (Quercus acutissima Carruth.) seedlings: Modulation of growth properties and the antioxidant defense responses. Environ. Sci. Pollut. Res. 2022, 29, 6526–6537. [Google Scholar] [CrossRef] [PubMed]
- Oddsdottir, E.S.; Eilenberg, J.; Sen, R.; Halldorsson, G. The effects of insect pathogenic soil fungi and ectomycorrhizal inoculation of birch seedlings on the survival of Otiorhynchus larvae. Agric. For. Entomol. 2010, 12, 319–324. [Google Scholar] [CrossRef]
- Chu, H.; Wang, H.; Zhang, Y.; Li, Z.; Wang, C.; Dai, D.; Tang, M. Inoculation with Ectomycorrhizal Fungi and Dark Septate Endophytes Contributes to the Resistance of Pinus spp. to Pine Wilt Disease. Front. Microbiol. 2021, 12, 687304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yu, H.; Tang, M. Prior contact of Pinus tabuliformis with ectomycorrhizal fungi increases plant growth and survival from damping-off. New For. 2017, 48, 855–866. [Google Scholar] [CrossRef]
- Yuan, J.; Yan, R.; Zhang, X.; Su, K.; Liu, H.; Wei, X.; Wang, R.; Huang, L.; Tang, N.; Wan, S.; et al. Soil organic phosphorus is mainly hydrolyzed via phosphatases from ectomycorrhiza-associated bacteria rather than ectomycorrhizal fungi. Plant Soil. 2024, 504, 659–678. Available online: https://link.springer.com/article/10.1007/s11104-024-06649-z (accessed on 1 October 2025). [CrossRef]
- Calvaruso, C.; Turpault, M.P.; Frey-Klett, P. Root-Associated Bacteria Contribute to Mineral Weathering and to Mineral Nutrition in Trees: A Budgeting Analysis. Appl. Environ. Microbiol. 2006, 72, 1258–1266. [Google Scholar] [CrossRef]
- Rodriguez, H.; Gonzalez, T.; Goire, I.; Bashan, Y. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 2004, 91, 552–555. [Google Scholar] [CrossRef]
- Uroz, S.; Calvaruso, C.; Turpault, M.P.; Frey-Klett, P. Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends Microbiol. 2009, 17, 378–387. [Google Scholar] [CrossRef]
- Deveau, A.; Brulé, C.; Palin, B.; Champmartin, D.; Rubini, P.; Garbaye, J.; Sarniguet, A.; Frey-Klett, P. Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ. Microbiol. Rep. 2010, 2, 560–568. [Google Scholar] [CrossRef]
- Duponnois, R.; Plenchette, C. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 2003, 13, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Sbrana, C.; Bagnoli, G.; Bedini, S.; Filippi, C.; Giovannetti, M.; Nuti, M.P. Adhesion to hyphal matrix and antifungal activity of Pseudomonas strains isolated from Tuber borchii ascocarps. Can. J. Microbiol. 2000, 46, 259–268. [Google Scholar] [CrossRef]
- Uroz, S.; Calvaruso, C.; Turpault, M.P.; Pierrat, J.C.; Mustin, C.; Frey-Klett, P. Effect of the Mycorrhizosphere on the Genotypic and Metabolic Diversity of the Bacterial Communities Involved in Mineral Weathering in a Forest Soil. Appl. Environ. Microbiol. 2007, 73, 3019–3027. [Google Scholar] [CrossRef]
- Li, M.; Song, Z.; Li, Z.; Qiao, R.; Zhang, P.; Ding, C.; Xie, J.; Chen, Y.; Guo, H. Populus root exudates are associated with rhizosphere microbial communities and symbiotic patterns. Front Microbiol. 2022, 13, 1042944. [Google Scholar] [CrossRef]
- Barriuso, J.; Pereyra, M.T.; García, J.A.L.; Megías, M.; Mañero, F.J.G.; Ramos, B. Screening for Putative PGPR to Improve Establishment of the Symbiosis Lactarius deliciosus-Pinus sp. Microb. Ecol. 2005, 50, 82–89. [Google Scholar] [CrossRef]
- Shirakawa, M.; Matsushita, N.; Fukuda, K. Visualization of root extracellular traps in an ectomycorrhizal woody plant (Pinus densiflora) and their interactions with root-associated bacteria. Planta 2023, 258, 12. [Google Scholar] [CrossRef]
- Thomas, P.; Jump, A. Edible fungi crops through mycoforestry, potential for carbon negative food production and mitigation of food and forestry conflicts. Proc. Natl. Acad. Sci. USA 2023, 120, e2220079120. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.; Flores, W.; Astolfi, M.; Espinoza, U.J.; Zimring, T.B.; Fox, K. Indigenizing fungal biotechnology for planetary health: An opinion paper. Fungal Biol. Biotechnol. 2025, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.; Bougher, N.; Dell, B.; Grove, T.; Malajczuk, N. (Eds.) Working with Mycorrhizas in Forestry and Agriculture; Australian Centre for International Agricultural Research: Canberra, Australia, 1996. [CrossRef]
- Hall, I.R.; Lyon, A.J.E.; Wang, Y.; Sinclair, L. Ectomycorrhizal fungi with edible fruiting bodies 2. Boletus edulis. Econ. Bot. 1998, 52, 44–56. [Google Scholar] [CrossRef]
- Iotti, M.; Piattoni, F.; Zambonelli, A. Techniques for Host Plant Inoculation with Truffles and Other Edible Ectomycorrhizal Mushrooms. In Edible Ectomycorrhizal Mushrooms; Zambonelli, A., Bonito, G.M., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 34, pp. 145–161. [Google Scholar] [CrossRef]
- Repáč, I. Ectomycorrhizal Inoculum and Inoculation Techniques. In Diversity and Biotechnology of Ectomycorrhizae; Rai, M., Varma, A., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2011; Volume 25, pp. 43–63. [Google Scholar] [CrossRef]
- Nuytinck, J.; Verbeken, A. Species delimitation and phylogenetic relationships in Lactarius section Deliciosi in Europe. Mycol. Res. 2007, 111, 1285–1297. [Google Scholar] [CrossRef]
- Hesler, L.R.; Smith, A.H. Studies on Lactarius-I: The North American Species of Sect. Lactarius. Brittonia 1960, 12, 119–139. [Google Scholar] [CrossRef]
- Nuytinck, J.; Verbeken, A.; Miller, S.L. Worldwide phylogeny of Lactarius section Deliciosi inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 2007, 99, 820–832. [Google Scholar] [CrossRef]
- Wang, Y.; Hall, I.R.; Dixon, C.; Hance-Halloy, M.; Strong, G.; Brass, P. The cultivation of Lactarius deliciosus (saffron milk cap) and Rhizopogon rubescens (shoro) in New Zealand. In Edible Mycorrhizal Mushrooms and Their Cultivation; New Zealand Institute for Crop & Food Research Limited: Christchurch, New Zealand, 2001; p. 6. Available online: https://api.semanticscholar.org/CorpusID:83471204 (accessed on 1 October 2025).
- Nuytinck, J.; Verbeken, M. Morphology and taxonomy of the European species in Lactarius sect. Deliciosi (Russulales). Mycotaxon 2005, 92, 125–168. [Google Scholar]
- Wang, R.; Wang, Y.; Guerin-Laguette, A.; Zhang, P.; Colinas, C.; Yu, F. Factors influencing successful establishment of exotic Pinus radiata seedlings with co-introduced Lactarius deliciosus or local ectomycorrhizal fungal communities. Front. Microbiol. 2022, 13, 973483. [Google Scholar] [CrossRef]
- Valenzuela, F. Hongos Comestibles Silvestres Colectados en la X Region de Chile. Bol. Micológico 2003, 18, 1–14. [Google Scholar] [CrossRef]
- Dunstan, W.A.; Dell, B.; Malajczuk, N. The diversity of ectomycorrhizal fungi associated with introduced Pinus spp. in the Southern Hemisphere, with particular reference to Western Australia. Mycorrhiza 1998, 8, 71–79. [Google Scholar] [CrossRef]
- Nuytinck, J. Lactarius Section Deliciosi (Russulales, Basidiomycota) and Its Ectomycorrhiza: A Morphological and Molecular Approach. Ph.D. Dissertation, Ghent University, Ghent, Belgium, 2005. Available online: http://hdl.handle.net/1854/LU-523175 (accessed on 20 December 2022).
- Guerin-Laguette, A.; Cummings, N.; Butler, R.C.; Willows, A.; Hesom-Williams, N.; Li, S.; Wang, Y. Lactarius deliciosus and Pinus radiata in New Zealand: Towards the development of innovative gourmet mushroom orchards. Mycorrhiza 2014, 24, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Rasalanavho, M.; Moodley, R.; Jonnalagadda, S.B. Elemental bioaccumulation and nutritional value of five species of wild growing mushrooms from South Africa. Food Chem. 2020, 319, 126596. [Google Scholar] [CrossRef] [PubMed]
- Brady, D. Forestry Statistics 2024: Chapter 1 Woodland Area & Planting; Forest Research: Dumfries, Scotland, 2024; p. 8. Available online: https://cdn.forestresearch.gov.uk/2024/10/Ch1_Woodland-WA-amendment.pdf (accessed on 8 September 2025).
- Lactarius deliciosus (L.) Gray Saffron Milkcap. NBN Atlas. 2025. Available online: https://nbnatlas.org/ (accessed on 4 September 2025).
- De la Varga, H.; Águeda, B.; Ágreda, T.; Martínez-Peña, F.; Parladé, J.; Pera, J. Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain. Mycorrhiza 2013, 23, 391–402. [Google Scholar] [CrossRef]
- De Román, M.; Boa, E. The marketing of Lactarius deliciosus in Northern Spain. Econ. Bot. 2006, 60, 284–290. [Google Scholar] [CrossRef]
- Boa, E.R. Wild Edible Fungi: A Global Overview of Their Use and Importance to People; Food & Agriculture Org.: Rome, Italy, 2004. [Google Scholar]
- Ibe, C.; Osuji, C.; Akunna, T.; Ahaotu, E.; Nwabueze, E. Vitamin Contents in Five Edible Varieties of Mushroom Consumed in Umuagwo Community, Imo State, Nigeria. Int. J. Agric. Biosci. 2013, 2, 177–180. [Google Scholar]
- Mumcu Kucuker, D.; Baskent, E.Z. Spatial prediction of Lactarius deliciosus and Lactarius salmonicolor mushroom distribution with logistic regression models in the Kızılcasu Planning Unit, Turkey. Mycorrhiza 2015, 25, 1–11. [Google Scholar] [CrossRef]
- Nuytinck, J.; De Crop, E.; Delgat, L.; Bafort, Q.; Ferreiro, M.R.; Verbeken, A.; Wang, X.-H. Recent Insights in the Phylogeny, Species Diversity, and Culinary Uses of Milkcap Genera Lactarius and Lactifluus. In Mushrooms, Humans and Nature in a Changing World: Perspectives from Ecological, Agricultural and Social Sciences; Pérez-Moreno, J., Guerin-Laguette, A., Flores Arzú, R., Yu, F.Q., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 273–286. [Google Scholar] [CrossRef]
- Poitou, N.; Mamoun, M.; Ducamp, M.; Delmas, J. Après le bolet granuleux, le lactaire délicieux obtenu en fructification au champ à partir de plants mycorhizés. P.H.M. Rev. Hortic. 1984, 244, 65–68. [Google Scholar]
- Guinberteau, J.; Ducamp, M.; Poitou, N.; Mamoun, M.; Olivier, J.M. Ecology of various competitors from an experimental plot of Pinus pinaster inoculated with Suillus granulatus and Lactarius deliciosus. Agric. Ecosyst. Environ. 1990, 28, 161–165. [Google Scholar] [CrossRef]
- Guerin-Laguette, A.; Plassard, C.; Mousain, D. Effects of experimental conditions on mycorrhizal relationships between Pinus sylvestris and Lactarius deliciosus and unprecedented fruit-body formation of the Saffron milk cap under controlled soilless conditions. Can. J. Microbiol. 2000, 46, 790–799. [Google Scholar] [CrossRef]
- Martín-Pinto, P.; Pajares, J.; Díez, J. In Vitro effects of four ectomycorrhizal fungi, Boletus edulis, Rhizopogon roseolus, Laccaria laccata and Lactarius deliciosus on Fusarium damping off in Pinus nigra seedlings. New For. 2006, 32, 323–334. [Google Scholar] [CrossRef]
- He, Y.; Zhu, W. Effects of different morphologies of Lactarius pine strains on the survival of Pinus massoniana seedlings infected for a certain period of time. Rural. Pract. Technol. 2022, 83–84. Available online: https://d.wanfangdata.com.cn/periodical/ncsyjs202201038 (accessed on 26 October 2025).
- Wang, D.; Hall, I.; He, X.; Xiong, W.; Peng, W. Morphological Observation of Synthesized Ectomycorrhizae betweeen Lactarius deliciosus and Three Pinus Species and Molecular Identification of Contaminating Species. Acta Edulis Fungi. 2021, 28, 129–134. [Google Scholar] [CrossRef]
- Llenatudespensa. Rebollón Lactarius deliciosus 1Kg Congelado. Llenatudespensa. 2025. Available online: https://llenatudespensa.com/Ficha/Producto/rebollon-lactarius-deliciosus-1kg_1284.html (accessed on 29 August 2025).
- Saraev, V.; Ahtikoski, A.; Whittet, R.; Ray, D. Economic evaluation of reopening a dormant tree improvement programme: A case study with Scots pine in Scotland. For. Int. J. For. Res. 2025, 98, 323–331. [Google Scholar] [CrossRef]
- Voces, R.; Diaz-Balteiro, L.; Alfranca, Ó. Demand for wild edible mushrooms. The case of Lactarius deliciosus in Barcelona (Spain). J. For. Econ. 2012, 18, 47–60. [Google Scholar] [CrossRef]
- Dahlberg, A.; Croneborg, H. The 33 Threatened Fungi in Europe; Council of Europe Publishing: Strasbourg, France, 2006; ISBN 978-92-871-5928-1. [Google Scholar]
- Dahlberg, A.; Croneborg, H. 33 Threatened Fungi in Europe: Complementary and Revised Information on Candidates for Listing in Appendix I of the Bern Convention; Council of Europe: Strasbourg, France, 2003; p. 3. Available online: http://www.coe.int/t/dg4/cultureheritage/conventions/bern/T-PVS/sc27_tpvs13_en.pdf (accessed on 1 October 2025).
- Sterkenburg, E.; Clemmensen, K.E.; Lindahl, B.D.; Dahlberg, A. The significance of retention trees for survival of ectomycorrhizal fungi in clear-cut Scots pine forests. Appl. Ecol. 2019, 56, 1367–1378. [Google Scholar] [CrossRef]
- Egli, S.; Peter, M.; Buser, C.; Stahel, W.; Ayer, F. Mushroom picking does not impair future harvests–results of a long-term study in Switzerland. Biol. Conserv. 2006, 129, 271–276. [Google Scholar] [CrossRef]
- Büntgen, U.; Oliach, D.; Martínez-Peña, F.; Latorre, J.; Egli, S.; Krusic, P.J. Black truffle winter production depends on Mediterranean summer precipitation. Environ. Res. Lett. 2019, 14, 074004. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Zhao, Z.; Wei, H.; Gao, B.; Gu, W. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci. Rep. 2017, 7, 46221. [Google Scholar] [CrossRef]
- Arnolds, E. Decline of ectomycorrhizal fungi in Europe. Agric. Ecosyst. Environ. 1991, 35, 209–244. [Google Scholar] [CrossRef]
- Elliott, T.F.; Elliott, K.; Vernes, K.; Elliott, T.F.; Elliott, K.; Vernes, K. The fungal rat race: Mycophagy among rodent communities in eastern Australia. Wildl. Res. 2022, 50, 526–536. [Google Scholar] [CrossRef]
- Maser, Z.; Maser, C.; Trappe, J.M. Food habits of the northern flying squirrel (Glaucomys sabrinus) in Oregon. Can. J. Zool. 1985, 63, 1084–1088. [Google Scholar] [CrossRef]
- Nuske, S.J.; Vernes, K.; May, T.W.; Claridge, A.W.; Congdon, B.C.; Krockenberger, A.; Abell, S.E. Data on the fungal species consumed by mammal species in Australia. Data Brief. 2017, 12, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Schickmann, S.; Urban, A.; Kräutler, K.; Nopp-Mayr, U.; Hackländer, K. The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval, disturbed and managed Central European mountainous forests. Oecologia 2012, 170, 395–409. [Google Scholar] [CrossRef]
- Zeller, K.A.; Ditmer, M.A.; Squires, J.R.; Rice, W.L.; Wilder, J.; DeLong, D.; Egan, A.; Pennington, N.; Wang, C.A.; Plucinski, J.; et al. Experimental recreationist noise alters behavior and space use of wildlife. Curr. Biol. 2024, 34, 2997–3004.e3. [Google Scholar] [CrossRef]
- Suárez, J.O.; Villada, D.; de Rueda, J.A.O.; Alves-Santos, F.M.; Diez, J.J. Effects of Lactarius deliciosus and Rhizopogon roseolus ectomycorrhyzal fungi on seeds and seedlings of Scots and stone pines inoculated with Fusarium oxysporum and Fusarium verticillioides. For. Chron. 2018, 94, 126–134. [Google Scholar] [CrossRef]
- Sanchez-Zabala, J.; Majada, J.; Martín-Rodrigues, N.; Gonzalez-Murua, C.; Ortega, U.; Alonso-Graña, M.; Arana, O.; Duñabeitia, M.K. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza 2013, 23, 627–640. [Google Scholar] [CrossRef]
- Guerin-Laguette, A.; Conventi, S.; Ruiz, G.; Plassard, C.; Mousain, D. The ectomycorrhizal symbiosis between Lactarius deliciosus and Pinus sylvestris in forest soil samples: Symbiotic efficiency and development on roots of a rDNA internal transcribed spacer-selected isolate of L. deliciosus. Mycorrhiza 2003, 13, 17–25. [Google Scholar] [CrossRef]
- Dijksterhuis, J.; van Doorn, T.; Samson, R.; Postma, J. Effects of Seven Fungicides on Non-Target Aquatic Fungi. Water Air Soil. Pollut. 2011, 222, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Gürkan, M.; Hayretdağ, S. Acute toxicity of maneb in the tadpoles of common and green toad. Arch. Ind. Hyg. Toxicol. 2015, 66, 189–195. [Google Scholar] [CrossRef]
- Ochoa-Acuña, H.G.; Bialkowski, W.; Yale, G.; Hahn, L. Toxicity of soybean rust fungicides to freshwater algae and Daphnia magna. Ecotoxicology 2009, 18, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Liu, L.; Gong, Y.X.; Ling, F.; Wang, G.X. Triazole-induced toxicity in developing rare minnow (Gobiocypris rarus) embryos. Environ. Sci. Pollut. Res. 2014, 21, 13625–13635. [Google Scholar] [CrossRef] [PubMed]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, Q.-X.; Cheng, X.-D.; Su, T.; Wang, X.-H.; Zhang, W.-N.; Lu, Y.-M.; Chen, Y. Biodegradation and detoxification of the triphenylmethane dye coomassie brilliant blue by the extracellular enzymes from mycelia of Lactarius deliciosus. Front. Chem. Sci. Eng. 2021, 15, 421–436. [Google Scholar] [CrossRef]
- Gramss, G.; Kirsche, B.; Voigt, K.D.; Günther Th Fritsche, W. Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycol. Res. 1999, 103, 1009–1018. [Google Scholar] [CrossRef]
- UNFCCC Paris Agreement. 2015. Available online: https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf (accessed on 4 July 2023).
- Moro, C.; Palacios, I.; Lozano, M.; D’Arrigo, M.; Guillamón, E.; Villares, A.; Martínez, J.A.; García-Lafuente, A. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem. 2012, 130, 350–355. [Google Scholar] [CrossRef]
- Feussi Tala, M.; Qin, J.; Ndongo, J.T.; Laatsch, H. New Azulene-Type Sesquiterpenoids from the Fruiting Bodies of Lactarius deliciosus. Nat. Prod. Bioprospect. 2017, 7, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Sun, S.; Wang, X.; Yu, H.; Dai, K.; Jiao, J.; Peng, C.; Ji, H.; Peng, L. Structural characteristics and intestinal flora metabolism mediated immunoregulatory effects of Lactarius deliciosus polysaccharide. Int. J. Biol. Macromol. 2024, 278, 135063. [Google Scholar] [CrossRef]
- Ding, X.; Hou, Y.; Hou, W. Structure feature and antitumor activity of a novel polysaccharide isolated from Lactarius deliciosus Gray. Carbohydr. Polym. 2012, 89, 397–402. [Google Scholar] [CrossRef]
- Kosanić, M.; Ranković, B.; Rančić, A.; Stanojković, T. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J. Food Drug Anal. 2016, 24, 477–484. [Google Scholar] [CrossRef]
- Nowakowski, P.; Markiewicz-Żukowska, R.; Gromkowska-Kępka, K.; Naliwajko, S.K.; Moskwa, J.; Bielecka, J.; Grabia, M.; Borawska, M.; Socha, K. Mushrooms as potential therapeutic agents in the treatment of cancer: Evaluation of anti-glioma effects of Coprinus comatus, Cantharellus cibarius, Lycoperdon perlatum and Lactarius deliciosus extracts. Biomed. Pharmacother. 2021, 133, 111090. [Google Scholar] [CrossRef]
- Xu, Z.; Fu, L.; Feng, S.; Yuan, M.; Huang, Y.; Liao, J.; Zhou, L.; Yang, H.; Ding, C. Chemical Composition, Antioxidant and Antihyperglycemic Activities of the Wild Lactarius deliciosus from China. Molecules 2019, 24, 1357. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Furigo, A., Jr.; Oliveira, V. Inoculant Production of Ectomycorrhizal Fungi by Solid and Submerged Fermentations. Food Technol. Biotechnol. 2007, 45, 227–286. [Google Scholar]
- Gomes, F.; Suárez, D.; Santos, R.; Silva, M.; Gaspar, D.; Machado, H. Mycorrhizal synthesis between Lactarius deliciosus and Arbutus unedo L. Mycorrhiza 2016, 26, 177–188. [Google Scholar] [CrossRef]
- Moser, M. Die Gattung Phlegmacium. In Die Pilze Mitteleuropas 4; J. Klinkhardt: Bad Heilbrunn, Germany, 1960. [Google Scholar]
- Marx, D.H. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 1969, 59, 153–163. [Google Scholar] [CrossRef]
- Oddoux, L. Recherches sur les Myceliums Secondaires des Homobasidies en Culture Pure–morphologie -cytoiogie–exigences alimentaires. Ph.D. Thesis, University of Lyon, Lyon, France, 1957. [Google Scholar]
- Chávez, D.; Pereira, G.; Machuca, Á. Crecimiento In Vitro de Lactarius Deliciosus en Medio de Cultivo BAF y, MNM.; Universidad de Talca: Talca, Chile, 2010; pp. 1–6. [Google Scholar]
- Chung, P. Crecimiento In Vitro de 4 cepas de Lactarius deliciosus bajo diferentes niveles de pH y medios de cultivo. Cienc. Investig. For. 2022, 28, 69–87. [Google Scholar] [CrossRef]
- Oort, A.J.P. Nutritional Requirements of Lactarius Species, and Cultural Characters in Relation to Taxonomy; North-Holland Publ. Co.: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Melin, E.; Norkrans, B. Amino Acids and the Growth of Lactarius deliciosus (L.) Fr. Physiol. Plant. 1948, 1, 176–184. [Google Scholar] [CrossRef]
- Akata, I.; Kalyoncu, F.; Halil Solak, M.; Kalmış, E. Growth of mycelium of three ectomycorrhizal macrofungi, Infundibulicybe geotropa, Tricholoma anatolicum and Lactarius deliciosus in culture media containing various carbon sources. Afr. J. Microbiol. Res. 2012, 6, 3042–3046. [Google Scholar] [CrossRef]
- Long, F.; Zhang, W. Effects of Four Different Types of Plant Growth Regulators on the Mycelia Growth of Lactarius deliciosus. Edible Fungi China 2014, 33, 27–30. [Google Scholar] [CrossRef]
- Melin, E.; Nyman, B. Weitere Untersuchungen über die Wirkung von Aneurin und Biotin auf das Wachstum von Wurzelpilzen. Arch. Mikrobiol. 1940, 11, 318–328. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, J.; Kang, H.; Xu, A.; Zhang, J.; Li, F. Optimum conditions for pure culture of major ectomycorrhizal fungi obtained from Pinus sylvestris var. mongolica plantations in southeastern Keerqin sandy lands, China. J. For. Res. 2008, 19, 113–118. [Google Scholar] [CrossRef]
- Fu, Y.; Nie, L.; Xia, F.; Shu, Q.; Wei, S. Study on Liquid Fermentation Medium for the Cultivation of Lactarius deliciosus. Biol. Disaster Sci. 2017, 40, 199–204. [Google Scholar] [CrossRef]
- Han, S.; Du, J.; Xia, H. Nutritional requirements and fermentation conditions of Lactarius pine mycelium in shake flask fermentation. Jiangsu Agric. Sci. 2012, 40, 224–226. [Google Scholar] [CrossRef]
- Li, L.; Luo, G.; Chen, M.; Huo, G. Selection of liquid medium and optimization of fermentation conditions of Lactarius deliciosus. China Brew. 2011, 20, 77–81. [Google Scholar]
- Lin, Q.; Chen, J. Effect of C-sources and N-sources on the Mycelial Growth of Lactarius deliciosus. Acta Edulis Fungi. 2002, 9, 44–46. [Google Scholar] [CrossRef] [PubMed]
- Ohta, A. Ability of ectomycorrhizal fungi to utilize starch and related substrates. Mycoscience. 1997, 38, 403–408. [Google Scholar] [CrossRef]
- Li, J.; Danao, M.G.C.; Chen, S.F.; Li, S.; Singh, V.; Brown, P.J. Prediction of Starch Content and Ethanol Yields of Sorghum Grain Using near Infrared Spectroscopy. J Infrared Spectrosc. 2015, 23, 85–92. [Google Scholar] [CrossRef]
- Montebugnoli, T.; Antonelli, G.; Chiarello, E.; Rivera, N.S.; Camporesi, G.; Danesi, F.; Bordoni, A. Development of a Simple Protocol to Assess Glucose Release After In Vitro Digestion, Allowing Comparison of Starchy Foods. Food Sci Nutr. 2025, 13, e70323. [Google Scholar] [CrossRef]
- Sakwa, L.; Cripwell, R.A.; Rose, S.H.; Viljoen-Bloom, M. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations. FEMS Yeast Res. 2018, 18, foy085. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, Z.; He, X. Pine mushrooms from Hunan of China. Acta Edulis Fungi. 2003, 10, 24–28. [Google Scholar] [CrossRef]
- Wang, X.; Nuytinck, J.; Verbeken, A. Lactarius vividus sp. nov. (Russulaceae, Russulales), a widely distributed edible mushroom in central and southern China. Phytotaxa 2015, 231, 63. [Google Scholar] [CrossRef]
- Song, S.; Wang, Y.; Long, H.; Wan, X.; Liu, D. Research on Fruiting Regularity of Lactarius deliciosus in Eastern Guizhou. Guizhou For. Sci. Technol. 2019, 47, 23–26. [Google Scholar] [CrossRef]
- Wang, H.; Luan, Z.; Liu, C.; Gong, X.; You, C.; Liang, L. Optimization of Solid and Submerged Culture Conditions for Purple Bronze Lactarius deliciosus Under Tissue Culture Conditions. Farm Prod. Process. 2019, 43–46. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, C.; Wu, S. Identification of Zihuajun in Guizhou Based on ITS and GPD Sequence Analysis. Chin. J. Trop. Crops. 2018, 39, 1794–1799. [Google Scholar] [CrossRef]
- Silva-Filho, A.; Sulzbacher, M.; Grebenc, T.; Wartchow, F. Not every edible orange milkcap is Lactarius deliciosus: First record of Lactarius quieticolor (sect. Deliciosi) from Brazil. J. Appl. Bot. Food Qual. 2020, 93, 289–299. [Google Scholar] [CrossRef]
- Pereira, G.; Campos, J.L.; Chávez, D.; Anabalón, L.; Arriagada, C. Characterization of mycelial growth of ectomycorrhizal fungus Lactarius aff. deliciosus and its symbiosis with Pinus radiata. Quebracho 2015, 22, 30–39. [Google Scholar]
- Zhan, S.; Wei, C. Culture for the Hyphae of Lactarius deliciosus in Wanxi Dabie Mountains by Semisolid Medium. J. West. Anhui Univ. 2013, 29, 1–4. [Google Scholar]
- Lapryrie, F.L.; Bruchet, G. Some Factors Influencing Viability of Ectomycorrhizal Fungal Inoculum. New Phytol. 1985, 100, 585–593. [Google Scholar] [CrossRef]
- Hung, L.L.; Trappe, J.M. Growth Variation Between and Within Species of Ectomycorrhizal Fungi in Response to pH In Vitro. Mycologia 1983, 75, 234–241. [Google Scholar] [CrossRef]
- Flores, R.; Honrubia, M.; Díaz, G. Caracterización de cepas de Lactarius sección Deliciosi de Guatemala y su comparación con cepas europeas de L. deliciosus. Rev. Mex. Micol. 2008, 26, 51–55. [Google Scholar]
- Sanchez, F.; Honrubia, M.; Torres, P. Effects of pH, water stress and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests. Cryptogam. Mycol. 2001, 22, 243–258. [Google Scholar] [CrossRef]
- Lazarević, J.; Stojičić, D.; Keča, N. Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest. For. Syst. 2016, 25, 048. [Google Scholar] [CrossRef]
- Olaizola, J.; Santamaría, O.; Diez, J.J. In Vitro growth of nine edible ectomycorrhizal fungi under a range of pH conditions. Bioagro 2023, 35, 159–166. [Google Scholar] [CrossRef]
- Zhu, J.; Li, F.; Xu, M.; Kang, H.; Wu, X. The role of ectomycorrhizal fungi in alleviating pine decline in semiarid sandy soil of northern China: An experimental approach. Ann. For. Sci. 2008, 65, 304. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G.; Kourtev, P.; Huang, W. Changes in Soil Functions Following Invasions of Exotic Understory Plants in Deciduous Forests. Ecol. Appl. 2001, 11, 1287–1300. [Google Scholar] [CrossRef]
- Horswill, P.; O’Sullivan, O.; Phoenix, G.K.; Lee, J.A.; Leake, J.R. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ. Pollut. 2008, 155, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil. Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Xu, J.; Tang, C.; Chen, Z.L. The role of plant residues in pH change of acid soils differing in initial pH. Soil. Biol. Biochem. 2006, 38, 709–719. [Google Scholar] [CrossRef]
- Rossi, M. Technology of the Production of Ectomycorrhizal Fungi Inoculants Employing Submerged Cultivation in an Airlift Bioreactor. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianopolis, Brazil, 2006. [Google Scholar]
- Schmidell, W. Stirring and Aeration in Bioreactors. In Engenharia Bioquímica; Schmidell, W., Lima, U.A., Aquarone, E., Borzani, W., Eds.; Biotecnologia Industrial; Edgard Blücher Ltda.: São Paulo, Brazil, 2001; Volume 2, pp. 277–331. [Google Scholar]
- Badri, D.; Vivanco, J. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef]
- Koo, B.J.; Adriano, D.C.; Bolan, N.S.; Barton, C.D. Root Exudates and Microorganisms. In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2005; pp. 421–428. [Google Scholar] [CrossRef]
- Stirk, W.A.; van Staden, J. Flow of cytokinins through the environment. Plant Growth Regul. 2010, 62, 101–116. [Google Scholar] [CrossRef]
- Horan, D.P.; Chilvers, G.A. Chemotropism—The key to ectomycorrhizal formation? New Phytol. 1990, 116, 297–301. [Google Scholar] [CrossRef]
- Lagrange, H.; Jay-Allgmand, C.; Rutin, L.F. the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol. 2001, 149, 349–355. [Google Scholar] [CrossRef]
- Zeng, R.S.; Mallik, A.U.; Setliff, E. Growth Stimulation of Ectomycorrhizal Fungi by Root Exudates of Brassicaceae Plants: Role of Degraded Compounds of Indole Glucosinolates. J. Chem. Ecol. 2003, 29, 1337–1355. [Google Scholar] [CrossRef]
- Sun, Y.P.; Fries, N. The effect of tree-root exudates on the growth rate of ectomycorrhizal and saprotrophic fungi. Mycorrhiza 1992, 1, 63–69. [Google Scholar] [CrossRef]
- Fries, N.; Bardet, M.; Serck-Hanssen, K. Growth of ectomycorrhizal fungi stimulated by lipids from a pine root exudate. Plant Soil. 1985, 86, 287–290. [Google Scholar] [CrossRef]
- Melin, E. Some effects of forest tree roots on mycorrhizal basidiomycetes. In Symbiotic Associations; Nutman, P.S., Mosse, B., Eds.; Cambridge University Press: Cambridge, UK, 1963; Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19630601879 (accessed on 4 April 2024).
- Laessøe, T.; Petersen, J.H. Fungi of Temperate Europe; Princeton University Press: Princeton, NJ, USA, 2019. [Google Scholar]
- Nuytinck, J.; Verbeken, A. A revision of Lactarius sect. Deliciosi (Russulales) in Europe. Scr. Bot. Belg. 2013, 51, 49–59. [Google Scholar]
- De Sena, A.; Mosdossy, K.; Whalen, J.K.; Madramootoo, C.A. Root exudates and microorganisms. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Xie, L.; Yang, Y.; Ma, J.; Deng, J.; Gille, C.E.; Zhang, Z.; Liu, M.; Robson, T.M.; Wang, Q.-W. Variation in seedling growth, root exudates and rhizosphere microbial communities of two temperate tree species under fluctuating light and extreme drought. Plant Soil 2025, 22, 1–14. [Google Scholar] [CrossRef]
- Elias, K.S.; Safir, G.R. Hyphal Elongation of Glomus fasciculatus in Response to Root Exudates. Appl. Environ. Microbiol. 1987, 53, 1928–1933. [Google Scholar] [CrossRef]
- Gogala, N. Growth substances in root exudate of Pinus sylvestris—Their influence on mycorrhizal fungi. (Effects of jasmonic acid). Agric Ecosyst Environ. 1990, 28, 151–154. [Google Scholar] [CrossRef]
- Gogala, N.; Pohleven, F. The effect of cytokinins and auxins on the growth of mycorrhizal fungus Suillus variegatus. Acta Bot. Croat. 1976, 35, 129–134. [Google Scholar]
- Zheng, X.; Kang, C.; Yang, L.; Wang, J.; Wang, W.; Yang, Y. Effects of Different Isolation and Culture Conditions on the Mycelia of Lactarius pine. Seed Sci. Technol. 2020, 38, 16–17. [Google Scholar]
- Melin, E. Der Einfluss von Waldstreuextrakten auf das Wachstum von Bodenpilzen, mit besonderer Berucksichtigung der Wurzelpilze von Baumen. Symb. Bot. Ups. 1946, 8, 116. [Google Scholar]
- Lindeberg, G. Über die Wirkung von Biotin auf Marasmius androsaceus (Fr.). Arch. Für. Mikrobiol. 1942, 12, 58–62. [Google Scholar] [CrossRef]
- Li, Z.; Ao, C.; Zhong, H. Study on fruit body of Lactarius deliciosus upon solid culture medium. Food Mach. 2006, 22, 11–13. [Google Scholar]
- Lee, J.; Kang, H.K.; Cheong, H.; Park, Y. A Novel Antimicrobial Peptides from Pine Needles of Pinus densiflora Sieb. et Zucc. Against Foodborne Bacteria. Front. Microbiol. 2021, 12, 662462. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, G.; Saha, S.; Kundu, S. Inhibitory activity of pine needle tannin extracts on some agriculturally resourceful microbes. Indian. J. Microbiol. 2007, 47, 267–270. [Google Scholar] [CrossRef]
- Parladé, J.; Pera, J.; Luque, J. Evaluation of mycelial inocula of edible Lactarius species for the production of Pinus pinaster and P. sylvestris mycorrhizal seedlings under greenhouse conditions. Mycorrhiza 2004, 14, 171–175. [Google Scholar] [CrossRef]
- Wang, R.; Guerin-Laguette, A.; Huang, L.-L.; Wang, X.-H.; Butler, R.; Wang, Y.; Yu, F.-Q. Mycorrhizal syntheses between Lactarius spp. section Deliciosi and Pinus spp. and the effects of grazing insects in Yunnan, China. Can. J. For. Res. 2019, 49, 616–627. [Google Scholar] [CrossRef]
- Parladé, J.; Hortal, S.; Pera, J.; Galipienso, L. Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persistence and interspecific competition. J. Biotechnol. 2007, 128, 14–23. [Google Scholar] [CrossRef]
- Rincón, A.; Álvarez, I.F.; Pera, J. Ectomycorrhizal fungi of Pinus pinea L. in northeastern Spain. Mycorrhiza 1999, 8, 271–276. [Google Scholar] [CrossRef]
- Su, K.; Yuan, J.; Wang, R.; Huang, L.; Zhan, J.; Zhang, X.; Wan, S.; He, X.; Lambers, H.; Yu, F.; et al. Dual transcriptomic and metabolomic analyses provide novel insights into the role of vitamins A and B metabolism in ectomycorrhizal symbiosis between Pinus yunnanensis and Lactarius deliciosus. Physiol Plant. 2024, 176, e14194. [Google Scholar] [CrossRef]
- Diaz, G.; Carrillo, C.; Honrubia, M. Mycorrhization, growth and nutrition of Pinus halepensis seedlings fertilized with different doses and sources of nitrogen. Ann. For. Sci. 2010, 67, 405. [Google Scholar] [CrossRef]
- Díaz, G.; Flores, R.; Honrubia, M. Lactarius indigo and L. deliciosus form mycorrhizae with Eurasian or Neotropical Pinus species. Sydowia 2007, 59, 32–45. [Google Scholar]
- Carrillo, C.; Diaz, G.; Honrubia, M. Testing the effect of routine fungicide application on ectomycorrhiza formation on Pinus halepensis seedlings in a nursery. For Pathol. 2011, 41, 70–74. [Google Scholar] [CrossRef]
- Carrillo, C.; Díaz, G.; Honrubia, M. Improving the Production of Ectomycorrhizal Fungus Mycelium in a Bioreactor by Measuring the Ergosterol Content. Eng. Life Sci. 2004, 4, 43–45. [Google Scholar] [CrossRef]
- Guerin-Laguette, A.; Vaario, L.M.; Matsushita, N.; Shindo, K.; Suzuki, K.; Lapeyrie, F. Growth stimulation of a Shiro-like, mycorrhiza forming, mycelium of Tricholoma matsutake on solid substrates by non-ionic surfactants or vegetable oil. Mycol. Prog. 2003, 2, 37–43. [Google Scholar] [CrossRef]
- Mediavilla, O.; Olaizola, J.; Santos-del-Blanco, L.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Mycorrhization between Cistus ladanifer L. and Boletus edulis Bull is enhanced by the mycorrhiza helper bacteria Pseudomonas fluorescens Migula. Mycorrhiza 2016, 26, 161–168. [Google Scholar] [CrossRef]
- Wang, Y.; Hall, I.R. Edible ectomycorrhizal mushrooms: Challenges and achievements. Can. J. Bot. 2004, 82, 1063–1073. [Google Scholar] [CrossRef]
- Hortal, S.; Pera, J.; Parladé, J. Tracking mycorrhizas and extraradical mycelium of the edible fungus Lactarius deliciosus under field competition with Rhizopogon spp. Mycorrhiza 2008, 18, 69–77. [Google Scholar] [CrossRef]
- Parladé, J.; Hortal, S.; De La Varga, H.; Pera, J. Intraspecific variability of Lactarius deliciosus isolates: Colonization ability and survival after cold storage. Mycorrhiza 2011, 21, 393–401. [Google Scholar] [CrossRef]
- Parladé, J.; Álvarez, I.F.; Pera, J. Ability of native ectomycorrhizal fungi from northern Spain to colonize Douglas-fir and other introduced conifers. Mycorrhiza 1995, 6, 51–55. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, J.; He, Q.; Shi, F.; Jiang, H.; Wu, H.; He, C. Impact of drainage on peatland soil environments and greenhouse gas emissions in Northeast China. Sci. Rep. 2025, 15, 8320. [Google Scholar] [CrossRef]
- Das, R.; Wang, X.; Itoh, M.; Shiodera, S.; Kuwata, M. Estimation of Metal Emissions From Tropical Peatland Burning in Indonesia by Controlled Laboratory Experiments. J. Geophys. Res. Atmos. 2019, 124, 6583–6599. [Google Scholar] [CrossRef]
- Nieminen, M.; Sallantaus, T.; Ukonmaanaho, L.; Nieminen, T.M.; Sarkkola, S. Nitrogen and phosphorus concentrations in discharge from drained peatland forests are increasing. Sci. Total Environ. 2017, 609, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Vítovcová, K.; Lipárová, J.; Manukjanová, A.; Vašutová, M.; Vrba, P.; Prach, K. Biodiversity restoration of formerly extracted raised bogs: Vegetation succession and recovery of other trophic groups. Wetl. Ecol. Manag. 2022, 30, 207–237. [Google Scholar] [CrossRef]
- Kędzior, R.; Zarzycki, J.; Zając, E. Raised bog biodiversity loss: A case-study of ground beetles (Coleoptera, Carabidae) as indicators of ecosystem degradation after peat mining. Land Degrad. Dev. 2022, 33, 3511–3522. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Regulation (EU) 2021/1056 of the European Parliament and of the Council of 24 June 2021 Establishing the Just Transition Fund. Off. J. Eur. Union 2021, 1–20. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021R1056 (accessed on 26 October 2025).
- European Commission. EU Cohesion Policy: €192 Million for Latvia’s Just Climate Transition. European Commission–Regional Policy. 2022. Available online: https://ec.europa.eu/regional_policy/whats-new/newsroom/12-01-2022-eu-cohesion-policy-eur192-million-for-latvia-s-just-climate-transition_en#:~:text=In%20particular%2C%20the%20Just%20Transition,with%20European%20Investment%20bank%20loans (accessed on 26 October 2025).
- Defra Press Office. Media Reporting on Peat-Ban for the Professional Horticulture Sector. Defra in the Media. Available online: https://deframedia.blog.gov.uk/2023/03/24/media-reporting-on-peat-ban-for-the-professional-horticulture-sector/ (accessed on 24 April 2023).
- Zheng, H.; Xu, L.; Xu, M. A Preliminary Study on the Cultivation and Mushroom Production of Lactarius Pine in Pine Forests. J. Jiangsu For. Sci. Technol. 2020, 47, 28–31. [Google Scholar] [CrossRef]
- Kraus, T.E.C.; Dahlgren, R.A.; Zasoski, R.J. Tannins in nutrient dynamics of forest ecosystems—A review. Plant Soil. 2003, 256, 41–66. [Google Scholar] [CrossRef]
- Grant, W.D. Microbial Degradation of Condensed Tannins. Science. 1976, 193, 1137–1139. [Google Scholar] [CrossRef]
- Nierop, K.G.J.; Verstraten, J.M. Fate of Tannins in Corsican Pine Litter. J Chem Ecol. 2006, 32, 2709–2719. [Google Scholar] [CrossRef]
- Tedersoo, L.; Suvi, T.; Jairus, T.; Kõljalg, U. Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol. 2008, 10, 1189–1201. [Google Scholar] [CrossRef]
- Jonsson, L.; Dahlberg, A.; Nilsson, M.; Kårén, O.; Zackrisson, O. Continuity of ectomycorrhizal fungi in self-regenerating boreal Pinus sylvestris forests studied by comparing mycobiont diversity on seedlings and mature trees. New Phytol. 1999, 142, 151–162. [Google Scholar] [CrossRef]
- Horton, T.R.; Bruns, T.D. The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Mol. Ecol. 2001, 10, 1855–1871. [Google Scholar] [CrossRef]
- Guo, M.; Ding, G.; Gao, G.; Zhang, Y.; Cao, H.; Ren, Y. Community composition of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica plantations of various ages in the Horqin Sandy Land. Ecol. Indic. 2020, 110, 105860. [Google Scholar] [CrossRef]
- Taylor, D.L.; Bruns, T.D. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: Minimal overlap between the mature forest and resistant propagule communities. Mol. Ecol. 1999, 8, 1837–1850. [Google Scholar] [CrossRef] [PubMed]
- Solly, E.F.; Lindahl, B.D.; Dawes, M.A.; Peter, M.; Souza, R.C.; Rixen, C.; Hagedorn, F. Experimental soil warming shifts the fungal community composition at the alpine treeline. New Phytol. 2017, 215, 766–778. [Google Scholar] [CrossRef]
- Erland, S.; Finlay, R. Effects of temperature and incubation time on the ability of three ectomycorrhizal fungi to colonize Pinus sylvestris roots. Mycol. Res. 1992, 96, 270–272. [Google Scholar] [CrossRef]
- Mahmood, S. Colonisation of spruce roots by two interacting ectomycorrhizal fungi in wood ash amended substrates. FEMS Microbiol. Lett. 2003, 221, 81–87. [Google Scholar] [CrossRef]
- Yang, N.; Wang, B.; Liu, D.; Wang, X.; Li, X.; Zhang, Y.; Xu, Y.; Peng, S.; Ge, Z.; Mao, L.; et al. Long-Term Nitrogen Deposition Alters Ectomycorrhizal Community Composition and Function in a Poplar Plantation. J. Fungi. 2021, 7, 791. [Google Scholar] [CrossRef]
- Kennedy, P.G.; Hortal, S.; Bergemann, S.E.; Bruns, T.D. Competitive Interactions among Three Ectomycorrhizal Fungi and Their Relation to Host Plant Performance. J. Ecol. 2007, 95, 1338–1345. [Google Scholar] [CrossRef]
- Kennedy, P. Ectomycorrhizal fungi and interspecific competition: Species interactions, community structure, coexistence mechanisms, and future research directions. New Phytol. 2010, 187, 895–910. [Google Scholar] [CrossRef]
- Parladé, J.; Alvarez, I.F. Coinoculation of aseptically grown Douglas fir with pairs of ectomycorrhizal fungi. Mycorrhiza 1993, 3, 93–96. [Google Scholar] [CrossRef]
- Timonen, S.; Tammi, H.; Sen, R. Outcome of interactions between genets of two Suillus spp. and different Pinus sylvestris genotype combinations: Identity and distribution of ectomycorrhizas and effects on early seedling growth in N-limited nursery soil. New Phytol. 1997, 137, 691–702. [Google Scholar] [CrossRef]
- Geml, J.; Leal, C.M.; Nagy, R.; Sulyok, J. Abiotic environmental factors drive the diversity, compositional dynamics and habitat preference of ectomycorrhizal fungi in Pannonian forest types. Front Microbiol. 2022, 13, 1007935. [Google Scholar] [CrossRef] [PubMed]
- Erland, S.; Taylor, A.F.S. Diversity of Ectomycorrhizal Fungal Communities in Relation to the Abiotic Environment. In Mycorrhizal Ecology; van der Heijden, M.G.A., Sanders, I.R., Eds.; Ecological Studies; Springer: Berlin, Heidelberg, 2002; pp. 163–200. [Google Scholar] [CrossRef]
- Castaño, C.; Lindahl, B.D.; Alday, J.G.; Hagenbo, A.; de Aragón, J.M.; Parladé, J.; Pera, J.; Bonet, J.A. Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytol. 2018, 220, 1211–1221. [Google Scholar] [CrossRef]
- Erlandson, S.R.; Savage, J.A.; Cavender-Bares, J.M.; Peay, K.G. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. FEMS Microbiol. Ecol. 2016, 92, fiv148. [Google Scholar] [CrossRef] [PubMed]
- Sabella, E.; Nutricati, E.; Aprile, A.; Miceli, A.; Sorce, C.; Lorenzi, R.; De Bellis, L. Arthrinium phaeospermum isolated from Tuber borchii ascomata: The first evidence for a “Mycorrhization Helper Fungus”? Mycol. Prog. 2015, 14, 59. [Google Scholar] [CrossRef]
- Liu, B.; Bonet, J.A.; Fischer, C.R.; Martínez de Aragón, J.; Bassie, L.; Colinas, C. Lactarius deliciosus Fr. soil extraradical mycelium correlates with stand fruitbody productivity and is increased by forest thinning. For. Ecol. Manag. 2016, 380, 196–201. [Google Scholar] [CrossRef]
- Funchess, M.J. Phosphurus Studies with Different Vegetable Crops in Different Soils; Agricultural Experiment Station of the Alabama Polytechnic Institute: Auburn, AL, USA, 1949. [Google Scholar]
- Barriuso, J.; Ramos Solano, B.; Santamaría, C.; Daza, A.; Gutiérrez Mañero, F.J. Effect of inoculation with putative plant growth-promoting rhizobacteria isolated from Pinus spp. on Pinus pinea growth, mycorrhization and rhizosphere microbial communities. J. Appl. Microbiol. 2008, 105, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Blake, G.R.; Steinhardt, G.C.; Pombal, X.P.; Muñoz, J.C.N.; Cortizas, A.M.; Arnold, R.W.; Schaetzl, R.J.; Stagnitti, F.; Parlange, J.-Y.; Steenhuis, T.S.; et al. Podzols. In Encyclopedia of Soil Science; Chesworth, W., Ed.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2008; pp. 580–582. [Google Scholar] [CrossRef]
- Jankowski, M.; Rutkowska, P.A. Podzolization in a 150-year chronosequence of soils under pine timber forest on inland dunes in the Toruń Basin (Northern Poland). CATENA. 2024, 247, 108551. [Google Scholar] [CrossRef]
- Mongil-Manso, J.; Navarro-Hevia, J.; Díaz-Gutiérrez, V.; Cruz-Alonso, V.; Ramos-Díez, I. Badlands forest restoration in Central Spain after 50 years under a Mediterranean-continental climate. Ecol. Eng. 2016, 97, 313–326. [Google Scholar] [CrossRef]
- Urban, A.; Puschenreiter, M.; Strauss, J.; Gorfer, M. Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza 2008, 18, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Soil Survey of Scotland Staff. National Soil Map of Scotland. 1981. Available online: https://zenodo.org/records/4646891 (accessed on 26 October 2025).
- O’Green, A. Soil Water Dynamics. Nat. Educ. Knowl. 2013, 4, 1–9. Available online: https://www.nature.com/scitable/knowledge/library/soil-water-dynamics-103089121/ (accessed on 7 September 2025).
- Romano, N.; Santini, A. 3.3.3 Field. In Methods of Soil Analysis: Part 4: Physical Methods; Soil Science Society of America: Madison, WI, USA, 2002; p. 731. [Google Scholar] [CrossRef]
- Bonet, J.A.; de-Miguel, S.; Martínez De Aragón, J.; Pukkala, T.; Palahí, M. Immediate effect of thinning on the yield of Lactarius group deliciosus in Pinus pinaster forests in Northeastern Spain. For Ecol Manag. 2012, 265, 211–217. [Google Scholar] [CrossRef]
- Elliott, W.T. Some observations on the Mycophagous propensities of slugs. Trans. Br. Mycol. Soc. 1922, 8, 84–90. [Google Scholar] [CrossRef]
- Hernández-Santiago, F.; Díaz-Aguilar, I.; Pérez-Moreno, J.; Tovar-Salinas, J.L. Interactions Between Soil Mesofauna and Edible Ectomycorrhizal Mushrooms. In Mushrooms, Humans and Nature in a Changing World; Pérez-Moreno, J., Guerin-Laguette, A., Flores Arzú, R., Yu, F.Q., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 367–405. [Google Scholar] [CrossRef]
- Hackman, W.; Meinander, M. Diptera feeding as larvae on macrofungi in Finland. Ann. Zool. Fenn. 1979, 16, 50–83. [Google Scholar]
- Ori, F.; Menotta, M.; Leonardi, M.; Amicucci, A.; Zambonelli, A.; Covès, H.; Selosse, M.-A.; Schneider-Maunoury, L.; Pacioni, G.; Iotti, M. Effect of slug mycophagy on Tuber aestivum spores. Fungal Biol. 2021, 125, 796–805. [Google Scholar] [CrossRef]
- Mumcu Küçüker, D.; Başkent, E.Z. Sustaining the Joint Production of Timber and Lactarius Mushroom: A Case Study of a Forest Management Planning Unit in Northwestern Turkey. Sustainability 2017, 9, 92. [Google Scholar] [CrossRef]
- Kauserud, H.; Heegaard, E.; Büntgen, U.; Halvorsen, R.; Egli, S.; Senn-Irlet, B.; Krisai-Greilhuber, I.; Dämon, W.; Sparks, T.; Nordén, J.; et al. Warming-induced shift in European mushroom fruiting phenology. Proc. Natl. Acad. Sci. USA 2012, 109, 14488–14493. [Google Scholar] [CrossRef]
- Li, C.; Xu, S. Edible mushroom industry in China: Current state and perspectives. Appl. Microbiol. Biotechnol. 2022, 106, 3949–3955. [Google Scholar] [CrossRef]
- Bonaglia, D.; Rivera León, L.; Wunsch-Vincent, S. Against All Odds, Global R&D Has Grown Close to USD 3 Trillion in 2023. Global Innovation Index. 2024. Available online: https://www.wipo.int/web/global-innovation-index/w/blogs/2024/end-of-year-edition (accessed on 10 September 2025).
- Hu, Y.; Qin, D.; Wang, D. Study on the nutritive factors and fermented permented process of the submerged culture of Lactarius deliciosus. Food Sci. Technol. 2006, 154–157. [Google Scholar] [CrossRef]
- Su, F.; Gu, X.; Deng, X.; Liu, Y.; Zeng, Q.; Liu, Y.; Zhao, T. Effect of carbon, nitrogen and phosphorus on the growth and mineral nutrition of Lactarius deliciosus In-Vitro. Food Ferment. Ind. 2015, 41, 99–104. Available online: http://sf1970.cnif.cn/CN/Y2015/V41/I5/99 (accessed on 26 October 2025).
- Wang, H.; Zhang, Z.; Chen, M. Study on the culture characteristics of mycelium of Lactarius pine. Edible Fungi 2016, 38, 10–11. [Google Scholar]
- Xue, Z.; Ying, G.; Lu, M.; Li, L.; Zhang, K.; Gao, F.; Ye, H. Study on the Pure Culture Characteristics of Lactarius pine Mycelium. Edible Med. Mushrooms 2012, 20, 231–233,242. [Google Scholar]
- Zhou, C.Y.; Liao, X.H.; Tan, Z.J.; Peng, Y.F. Study on the Strain Breeding and Cultivating Conditions of Wild Lactarius deliciosus. Food Sci. 2004, 25, 66–69. [Google Scholar]
- Zhou, G.; Liu, J.; Li, Q. Tissue isolation and mycelium growth characteristics of Lactarius deliciosus. J. Zhejiang For. Coll. 2003, 20, 158–161. [Google Scholar]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhungana, A.; Thomas, P.W.; Wilson, C.; Sanderson, R.; Jump, A. Mycoforestry with the Saffron Milk Cap (Lactarius deliciosus L.:Fr. S.F. Gray) and Its Potential as a Large-Scale Food Production System. Diversity 2025, 17, 821. https://doi.org/10.3390/d17120821
Dhungana A, Thomas PW, Wilson C, Sanderson R, Jump A. Mycoforestry with the Saffron Milk Cap (Lactarius deliciosus L.:Fr. S.F. Gray) and Its Potential as a Large-Scale Food Production System. Diversity. 2025; 17(12):821. https://doi.org/10.3390/d17120821
Chicago/Turabian StyleDhungana, André, Paul W. Thomas, Clare Wilson, Roy Sanderson, and Alistair Jump. 2025. "Mycoforestry with the Saffron Milk Cap (Lactarius deliciosus L.:Fr. S.F. Gray) and Its Potential as a Large-Scale Food Production System" Diversity 17, no. 12: 821. https://doi.org/10.3390/d17120821
APA StyleDhungana, A., Thomas, P. W., Wilson, C., Sanderson, R., & Jump, A. (2025). Mycoforestry with the Saffron Milk Cap (Lactarius deliciosus L.:Fr. S.F. Gray) and Its Potential as a Large-Scale Food Production System. Diversity, 17(12), 821. https://doi.org/10.3390/d17120821

