First Records of Beetle Fauna (Insecta: Coleoptera) from Late Glacial Sediments of Lithuania: Novel Environmental Reconstructions
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Descriptions and Sample Collection
2.2. Radiocarbon Dating
2.3. Insect Extraction
2.4. Beetle Identifications and Environmental Classifications
3. Results
3.1. Radiocarbon Dating
3.2. Sequence Correlations
3.3. Identifications and Ecological Classifications of the Beetle Remains
3.3.1. Ventė
3.3.2. Pamerkiai
3.3.3. Zervynos
4. Discussion
4.1. Cross-Site Correlation of Beetle Taxa
4.2. Late Glacial Environmental Reconstructions Based on the Beetle Records
4.3. Common Beetle Taxa in Europe During the Late Glacial
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krüger, L.C.; Paus, A.; Svendsen, J.I.; Bjune, A.E. Lateglacial vegetation and palaeoenvironment in W Norway, with new pollen data from the Sunnmøre region. Boreas 2011, 40, 616–635. [Google Scholar] [CrossRef]
- Theuerkauf, M.; Joosten, H. Younger Dryas cold stage vegetation patterns of central Europe climate, soil and relief controls. Boreas 2012, 41, 391–407. [Google Scholar] [CrossRef]
- Poska, A.; Saarse, L.; Koppel, K.; Nielsen, A.B.; Ave, E.; Vassiljev, J.; Välif, V. The Verijärv area, South Estonia over the last millennium: A high resolution quantitative land-cover reconstruction based on pollen and historical data. Rev. Palaeobot. Palynol. 2014, 207, 5–17. [Google Scholar] [CrossRef]
- Menéndez, R.; González-Megías, A.; Jay-Robert, P.; Marquéz-Ferrando, R. Climate change and elevational range shifts of dung beetles. Glob. Ecol. Biogeogr. 2014, 23, 646–657. [Google Scholar] [CrossRef]
- Coope, G.R. The response of insect faunas to glacial-interglacial climatic fluctuations. Philos. Trans. R. Soc. Lond. B 1994, 344, 19–26. [Google Scholar] [CrossRef]
- Coope, G.R. Fossil Coleopteran assemblages as sensitive indicators of climatic changes during the Devensian (Last) cold stage. Philos. Trans. R. Soc. Lond. Ser. B 1977, 280, 313–340. [Google Scholar] [CrossRef]
- Coope, G.R.; Lemdahl, G.; Lowe, J.J.; Walkling, A.P. Temperature gradients in northern Europe during the last glacial–interglacial transition (14–9 14C kyr BP.) interpreted from coleopteran assemblages. J. Quat. Sci. 1998, 13, 419–433. [Google Scholar] [CrossRef]
- Lemdahl, G. Late-glacial and early-Holocene Coleoptera assemblages as indicators of local environment and climate at Kråkenes Lake, western Norway. J. Paleolimnol. 2000, 23, 57–66. [Google Scholar] [CrossRef]
- Walker, M.; Coope, G.; Sheldrick, C.; Turney, C.; Lowe, J.; Blockley, S.; Harkness, D. Devensian Lateglacial environmental changes in Britain: A multi-proxy environmental record from Llanilid, South Wales, UK. Quat. Sci. Rev. 2003, 22, 475–520. [Google Scholar] [CrossRef]
- Buckland, P.I. The Bugs Coleopteran Ecology Package (BugsCEP) database: 1000 sites and half a million fossils later. Quat. Int. 2014, 341, 272–282. [Google Scholar] [CrossRef]
- Björck, S.; Rundgren, M.; Ingólfsson, Ó.; Funder, S. The Preboreal Oscillation around the Nordic Seas: Terrestrial and Lacustrine Responses. J. Quat. Sci. 1997, 12, 455–465. [Google Scholar] [CrossRef]
- Peyron, O.; Guiot, J.; Cheddadi, R.; Tarasov, P.; Reille, M.; de Beaulieu, J.L.; Bottema, S.; Andrieu, V. Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data. Quat. Res. 1998, 49, 183–196. [Google Scholar] [CrossRef]
- Magny, M.; Bégeot, C.; Guiot, J.; Peyron, O. Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quat. Sci. Rev. 2003, 22, 1589–1596. [Google Scholar] [CrossRef]
- Zeeberg, J. The European sand belt in eastern Europe—And comparison of Late Glacial dune orientation with GCM simulation results. Boreas 1998, 27, 127–139. [Google Scholar] [CrossRef]
- Koster, E.A. The “European Eolian Sand Belt”: Geoconservation of Drift Sand Landscapes. Geoheritage 2009, 1, 93–110. [Google Scholar] [CrossRef]
- Rinterknecht, V.R.; Bitinas, A.; Clark, P.U.; Raisbeck, G.M.; You, F.; Brook, E.J. Timing of the last glaciation in Lithuania. Boreas 2008, 37, 329–468. [Google Scholar] [CrossRef]
- Blažauskas, N.; Jurgaitis, A.; Šinkūnas, P. Patterns of Late Pleistocene proglacial fluvial sedimentation in the SE Lithuanian Plain. Sediment. Geol. 2007, 193, 193–201. [Google Scholar] [CrossRef]
- Daumantas, L.; Šinkūnas, P.; Rudnickaitė, E.; Dobrotina, N.; Kisielienė, D.; Spiridonov, A. Late Pleistocene to Middle Holocene record of sedimentation and carbonate content in the Zervynos paleolake-dune complex, Lithuania. Est. J. Earth Sci. 2022, 71, 214–229. [Google Scholar] [CrossRef]
- Kalińska-Nartiša, E.; Thiel, C.; Nartišs, M.; Buylaert, J.-P.; Murray, A.S. Age and sedimentary record of inland eolian sediments in Lithuania, NE European Sand Belt. Quat. Res. 2015, 84, 82–95. [Google Scholar] [CrossRef]
- Blažauskas, N.; Kisielienė, D.; Kučinskaitė, V.; Stančikaitė, M.; Šeirienė, V.; Šinkūnas, P. Late Glacial and Holocene sedimentary environment in the region of the Ūla River. Geologija 1998, 25, 20–30. [Google Scholar]
- Stančikaitė, M.; Šeirienė, V.; Šinkūnas, P. The new results of Pamerkys outcrop, South Lithuania investigations. Geologija 1998, 23, 77–88. [Google Scholar]
- Stančikaitė, M.; Šinkūnas, P.; Šeirienė, V.; Kisielienė, D. Patterns and chronology of the lateglacial environmental development at Pamerkiai and Kašučiai, Lithuania. Quat. Sci. Rev. 2008, 27, 127–147. [Google Scholar] [CrossRef]
- Gudaitienė, G.; Motuza, G.; Stančikaitė, M.; Pukienė, R.; Kisielienė, D.; Mažeika, J.; Čelkis, T.; Baltramiejūnaitė, D.; Ežerinskis, Ž. New insights into the medieval history of a non-urban territory: Multidisciplinary investigations in SE Lithuania. Baltica 2022, 35, 91–113. [Google Scholar] [CrossRef]
- Guobytė, R. Teritorijos nuledėjimo kartoschema, M 1:2,000,000. In Lietuvos Nacionalinis Atlasas; Nacionalinė žemės tarnyba prie Žemės ūkio ministerijos: Vilnius, Lithuania, 2014. [Google Scholar]
- Gaigalas, A.; Melešytė, M. Nemuno ledynmečio nuogulų paplitimas ir sudėtis. In Akmens Amžius Pietų Lietuvoje: (Geologijos, Paleogeografijos ir Archeologijos Duomenimis); Baltrūnas, V., Ed.; Geologijos institutas: Vilnius, Lithuania, 2001; pp. 46–54. [Google Scholar]
- Bitinas, A.; Damušytė, A.; Stančikaitė, M.; Aleksa, P. Geological development of the Nemunas River Delta and adjacent areas, West Lithuania. Geol. Q. 2002, 46, 375–389. [Google Scholar]
- Bronk Ramsey, C.; Dee, M.; Lee, S.; Nakagawa, T.; Staff, R. Developments in the calibration and modelling of radiocarbon dates. Radiocarbon 2010, 52, 953–961. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Kenward, H.K.; Hall, A.R.; Jones, A.K.G. A tested set of techniques for the extraction of plant and animal macrofossils from waterlogged archaeological deposits. Sci. Archaeol. 1980, 22, 3–15. [Google Scholar]
- Buckland, P.I.; Buckland, P.C. BugsCEP Coleopteran Ecology Package; IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2006-116; NOAA/NCDC Paleoclimatology Program: Boulder, CO, USA, 2006. [Google Scholar]
- Koch, K. Die Käfer Mitteleuropas, Ökologie 1; Goecke & Evers: Krefeld, Germany, 1989. [Google Scholar]
- Koch, K. Die Käfer Mitteleuropas, Ökologie 2; Goecke & Evers: Krefeld, Germany, 1989. [Google Scholar]
- Koch, K. Die Käfer Mitteleuropas, Ökologie 3; Goecke & Evers: Krefeld, Germany, 1992. [Google Scholar]
- Robinson, M.A. The use of ecological groupings of Coleoptera for comparing sites. In The Environment of Man: The Iron Age to the Anglo-Saxon Period (British Archaeological Reports, British Series 87); Jones, M., Dimbleby, G., Eds.; British Archaeological Reports: Oxford, UK, 1981; pp. 251–286. [Google Scholar]
- Smith, D.; Whitehouse, N.; Bunting, M.J.; Chapman, H. Can we characterise “openness” in the Holocene palaeoenvironmental record? Modern analogue studies of insect faunas and pollen spectra from Dunham Massey deer park and Epping Forest, England. Holocene 2009, 20, 215–229. [Google Scholar] [CrossRef]
- Tamutis, V.; Tamutė, B.; Ferenca, R. A catalogue of Lithuanian beetles (Insecta, Coleoptera). ZooKeys 2011, 121, 1–194. [Google Scholar] [CrossRef]
- Bray, J.T.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Foster, G.N.; Friday, L.E. Keys to the adults of the water beetles of Britain and Ireland (Part 1). In Handbooks for the Identification of British Insects; Field Studies Council for the Royal Entomological Society: Preston Montford, UK, 2011; Volume 4. [Google Scholar] [CrossRef]
- Lowe, J.; Rasmussen, S.; Björck, S.; Hoek, W.; Steffensen, J.; Walker, M.; Yu, Z. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: A revised protocol recommended by the INTIMATE group. Quat. Sci. Rev. 2008, 27, 6–17. [Google Scholar] [CrossRef]
- Anderson, R. Northern Ireland species inventories. Rove Beetles (Coleoptera: Staphylinidae). Environ. Herit. Serv. Res. Dev. Ser. 1997, 97/11, 1–78. [Google Scholar]
- Bullock, J.A. Host Plants of British Beetles: A List of Recorded Associations; Amateur Entomologist; Amateur Entomologists’ Society: London, UK, 1993; Volume 11a, pp. 1–24. [Google Scholar]
- Alexander, K.N.A. The invertebrates of living and decaying timber in Britain and Ireland—A provisional annotated checklist. Engl. Nat. Res. Rep. 2002, 467, 142. [Google Scholar]
- Trasune, L.; Väliranta, M.; Stivrins, N.; Amon, L.; Schenk, F.; Salonen, J.S. A comparison of plant macrofossil-based quantitative climate reconstruction methods: A case study of the lateglacial Baltic States. Quat. Sci. Rev. 2024, 338, 108811. [Google Scholar] [CrossRef]
- Heikkilä, M.; Fontana, S.L.; Seppä, H. Rapid Lateglacial tree population dynamics and ecosystem changes in the eastern Baltic region. J. Quat. Sci. 2009, 24, 802–815. [Google Scholar] [CrossRef]
- Cuppen, J.G.M.; Nilsson, A. Ochthebius rugulosus Wollaston in Fennoscandia (Coleoptera, Hydraenidae). Entomol. Tidskr. 1991, 112, 39–42. [Google Scholar]
- Shavrin, A.V. A review of the genus Pycnoglypta Thomson, 1858 (Staphylinidae, Omaliinae, Omaliini) with notes on related taxa. Zootaxa 2016, 4077, 1–94. [Google Scholar] [CrossRef]
- Morris, M.G. Broad-Nosed Weevils. Coleoptera: Curculionidae (Entiminae). In Handbooks for the Identification of British Insects; Royal Entomological Society: London, UK, 1997; Volume 5, Part 17a. [Google Scholar]
- Kabailienė, M.; Vaikutienė, G.; Damušytė, A.; Rudnickaitė, E. Post–Glacial stratigraphy and palaeoenvironment of the northern part of the Curonian Spit, Western Lithuania. Quat. Int. 2009, 207, 69–79. [Google Scholar] [CrossRef]
- Roslin, T.; Forshage, M.; Ødegaard, F.; Ekblad, C.; Liljeberg, G. Nordens Dyngbaggar; Entomologiska Föreningen i Stockholm: Stockholm, Sweden, 2014. [Google Scholar]
- Veski, S.; Amon, L.; Heinsalu, A.; Reitalu, T.; Saarse, L.; Stivrins, N.; Vassiljev, J. Lateglacial vegetation dynamics in the eastern Baltic region between 14,500 and 11,400 cal yr BP: A complete record since the Bølling (GI-1e) to the Holocene. Quat. Sci. Rev. 2012, 40, 39–53. [Google Scholar] [CrossRef]
- Ahrens, W.; Bauer, T. Diving behaviour and respiration in Blethisa multipunctata in comparison with two other ground beetles. Physiol. Entomol. 2008, 12, 255–261. [Google Scholar] [CrossRef]
- Ukkonen, P.; Lougas, L.; Zagorska, I.; Luksevica, L.; Luksevics, E.; Daugnora, L.; Jungner, H. History of the reindeer (Rangifer tarandus) in the eastern Baltic region and its implications for the origin and immigration routes of the recent northern European wild reindeer populations. Boreas 2006, 35, 222–230. [Google Scholar] [CrossRef]
- Ukkonen, P.; Aaris-Sørensen, K.; Arppe, L.; Clark, P.; Daugnora, L.; Lister, A.; Lõugas, L.; Seppä, H.; Sommer, R.; Stuart, A.; et al. Woolly mammoth (Mammuthus primigenius Blum.) and its environment in northern Europe during the last glaciation. Quat. Sci. Rev. 2011, 30, 693–712. [Google Scholar] [CrossRef]
- Coope, G.R. Insects. In Late Quaternary Environmental Change in North-West Europe: Excavations at Holywell Coombe, South-East England: Excavations at Holywell Coombe, South-East England; Preece, R.C., Bridgeland, D.R., Eds.; Chapman & Hall: London, UK, 1998; pp. 213–233. [Google Scholar]
- Hammarlund, D.; Lemdahl, G. A Late Weichselian stable isotope stratigraphy compared with biostratigraphical data: A case study from southern Sweden. J. Quat. Sci. 1994, 9, 13–31. [Google Scholar] [CrossRef]
- Ponel, P. Rissian, Eemian and Würmian Coleoptera assemblages from La Grande Pile (Vosges, France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 114, 1–41. [Google Scholar] [CrossRef]
- Walking, A.P.; Coope, G.R. Climatic reconstructions from the Eemian/Early Weichselian transition in Central Europe based on the coleopteran record from Gröbern, Germany. Boreas 1996, 25, 145–159. [Google Scholar] [CrossRef]
- Lemdahl, G. Late Vistulian insect assemblages from Zabinko, western Poland. Boreas 1991, 20, 71–77. [Google Scholar] [CrossRef]
- Shotton, F.W.; Keen, D.H.; Coope, G.R.; Currant, A.P.; Gibbard, P.L.; Aalto, M.; Peglar, S.M.; Robinson, J.E. The Middle Pleistocene deposits of Waverley Wood Pit, Warwickshire, England. J. Quat. Sci. 1993, 8, 293–325. [Google Scholar] [CrossRef]
- Ponel, P. Late Pleistocene coleopteran fossil assemblages in high altitude sites: A case Study from Prato Spilla (northern Italy). In Studies in Quaternary Entomology, an Inordinate Fondness for Insects; Quaternary Proceedings 5; Ashworth, A.C., Buckland, P.C., Sadler, J.P., Eds.; Wiley: Chichester, UK, 1997; pp. 207–218. [Google Scholar]
- Luff, M.L. Provisional Atlas of the Ground Beetles (Coleoptera, Carabidae) of Britain; Centre for Ecology & Hydrology, Biological Records Centre: Abbots Ripton, UK, 1998. [Google Scholar]
- GBIF.org. GBIF Occurrence Download. Available online: https://doi.org/10.15468/dl.p8we4k (accessed on 10 November 2025).
- GBIF.org. GBIF Occurrence Download. Available online: https://doi.org/10.15468/dl.fhkpg6 (accessed on 11 November 2025).
- GBIF.org. GBIF Occurrence Download. Available online: https://doi.org/10.15468/dl.ms4vr9 (accessed on 10 November 2025).
- GBIF.org. GBIF Occurrence Download. Available online: https://doi.org/10.15468/dl.zu7c65 (accessed on 10 November 2025).
- Lemdahl, G. Late Weichselian and Early Holocene Colonisation of Beetle Faunas in S Sweden. In Studies in Quaternary Entomology: An Inordinate Fondness for Insects; Quaternary Proceedings; Wiley: Hoboken, NJ, USA, 1997; Volume 5, pp. 153–164. ISBN 0-471-96975-3. [Google Scholar]
- Lemdahl, G.; Elias, S.A. Late Pleistocene insect fossils of Europe. In Encyclopedia of Quaternary Science, 3rd ed.; Elias, S., Ed.; Elsevier: Oxford, UK, 2025; Volume 1, pp. 291–303. [Google Scholar] [CrossRef]
- Gobbi, M.; de Bernardi, F.; Pelfini, M.; Rossaro, B.; Brandmayr, P. Epigean Arthropod Succession along a 154-year Glacier Foreland Chronosequence in the Forni Valley (Central Italian Alps). Arct. Antarct. Alp. Res. 2006, 38, 357–362. [Google Scholar] [CrossRef]






| Pamerkiai Outcrop | ||||||
| Depth | Sample name | Material | Lab code | Age + SD (yr BP) | Cal. age (cal BP) | CI |
| 40 cm | PK3 top | Plant seeds | FTMC-BC34-7 | 10,647 ± 49 | 12,740–12,500 | 95.4% |
| 64 cm | PK3base | Plant seeds | FTMC-LV69-11 | 10,913 ± 55 | 12,970–12,739 | 95.4% |
| 95 cm | PK2 | Plant seeds | FTMC-LV69-10 | 10,849 ± 52 | 12,886–12,726 | 95.4% |
| 95 cm | PK2 | Charcoal | FTMC-LV69-9 | 11,601 ± 49 | 13,585–13,341 | 95.4% |
| 102 cm | PK1 top | Plant seeds | FTMC-LV69-8 | 11,712 ± 51 | 13,746–13,462 | 95.4% |
| 122 cm | PK1 base | Plant seeds | FTMC-BC34-6 | 11,351 ± 48 | 13,320–13,120 | 95.4% |
| Zervynos Outcrop | ||||||
| Depth | Sample name | Material | Lab code | Age + SD (yr BP) | Cal. age (cal BP) | CI |
| 0 cm | ZV4 top | Plant seeds | FTMC-LV69-21 | 10,064 ± 55 | 11,822–11,336 | 95.4% |
| 25 cm | ZV4 base | Plant seeds | FTMC-LV69-18 | 10,426 ± 51 | 12,609–12,048 | 95.4% |
| 35 cm | ZV2 top | Plant seeds | FTMC-LV69-17 | 12,413 ± 60 | 14,924–14,215 | 95.4% |
| 45 cm | ZV2 base | Plant seeds | FTMC-BC34-10 | 13,865 ± 47 | 17,020–16,640 | 95.4% |
| 50 cm | ZV1 top | Plant seeds | FTMC-LV69-15 | 13,418 ± 49 | 16,347–15,962 | 95.4% |
| 95 cm | ZV1 base | Bulk sediment | FTMC-BC34-9 | 12,779 ± 45 | 15,540–15,080 | 95.4% |
| 105 cm | ZV1 base | Plant seeds | FTMC-BC34-8 | 12,202 ± 54 | 14,330–13,870 | 95.4% |
| 105 cm | ZV1 base | Plant seeds | FTMC-LV69-14 | 11,751 ± 51 | 13,752–13,500 | 95.4% |
| Ventė Outcrop | ||||||
| Depth | Sample name | Material | Lab code | Age + SD (yr BP) | Cal. age (cal BP) | CI |
| 270 cm | VT | Plant seeds | FTMC-LV69-13 | 11,135 ± 49 | 13,161–12,915 | 95.4% |
| Most common taxa (MNI) | Ecotone | VT | PK | ZV | Total |
| Dytiscidae | |||||
| Ilybius fenestratus (F.) | Aquatic | 10 | 0 | 0 | 10 |
| Staphylinidae | |||||
| Pycnoglypta lurida (Gyll.) | Wetland | 0 | 17 | 5 | 22 |
| Olophrum consimile (Gyll.) | Wetland | 22 | 13 | 15 | 49 |
| Olophrum fuscum (Grav.) | Wetland | 5 | 3 | 1 | 9 |
| Arpedium quadrum (Grav.) | Open | 3 | 0 | 12 | 15 |
| Eucnecosum brachypterum (Grav.) | Open | 8 | 5 | 16 | 29 |
| Stenus spp. | Wetland | 26 | 14 | 12 | 52 |
| Scirtidae | |||||
| Cyphon spp. | Wetland | 16 | 38 | 3 | 57 |
| Byrrhidae | |||||
| Cytilus sericeus (Forst.) | Open | 1 | 4 | 4 | 9 |
| Latridiidae | |||||
| Corticarina sp. | Foul | 0 | 10 | 0 | 10 |
| Curculionidae | |||||
| Otiorhynchus nodosus (Müll.) | Open | 1 | 3 | 6 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schafstall, N.; Stančikaitė, M.; Ferenca, R.; Šeirienė, V. First Records of Beetle Fauna (Insecta: Coleoptera) from Late Glacial Sediments of Lithuania: Novel Environmental Reconstructions. Diversity 2025, 17, 820. https://doi.org/10.3390/d17120820
Schafstall N, Stančikaitė M, Ferenca R, Šeirienė V. First Records of Beetle Fauna (Insecta: Coleoptera) from Late Glacial Sediments of Lithuania: Novel Environmental Reconstructions. Diversity. 2025; 17(12):820. https://doi.org/10.3390/d17120820
Chicago/Turabian StyleSchafstall, Nick, Miglė Stančikaitė, Romas Ferenca, and Vaida Šeirienė. 2025. "First Records of Beetle Fauna (Insecta: Coleoptera) from Late Glacial Sediments of Lithuania: Novel Environmental Reconstructions" Diversity 17, no. 12: 820. https://doi.org/10.3390/d17120820
APA StyleSchafstall, N., Stančikaitė, M., Ferenca, R., & Šeirienė, V. (2025). First Records of Beetle Fauna (Insecta: Coleoptera) from Late Glacial Sediments of Lithuania: Novel Environmental Reconstructions. Diversity, 17(12), 820. https://doi.org/10.3390/d17120820

