Environmental Niche Differentiation and Past Colonization Dynamics of Two European Freshwater Mussels (Unio crassus and Unio nanus)
Abstract
1. Introduction
2. Materials and Methods
- Current (1979–2013): Anthropocene [31]
- LH: Late-Holocene, Meghalayan (4.2–0.3 ka) [32]
- EH: Early-Holocene, Greenlandian (11.7–8.326 ka) [32]
- LGM: Last Glacial Maximum (21 ka) [31]
- LIG: Last Interglacial (130 ka) [33]
- MIS19: Marine Isotope Stage 19 (787 ka) [34]
- mPWP: Mid-Pliocene Warm Period (3.205 Ma) [35]
3. Results
3.1. Bioclimatic Variable Selection and Model Performance
3.2. Species Distribution Model (SDM)
3.3. Paleo Species Distribution Models (PaleoSDM)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AUC | Area Under the Receiver Operating Characteristic Curve |
| EH | Early-Holocene, Greenlandian (11.7–8.326 ka) |
| ka | kilo-annum = thousand years ago |
| IUCN | International Union for Conservation of Nature |
| LGM | Last Glacial Maximum (21 ka) |
| LH | Late-Holocene, Meghalayan (4.2–0.3 ka) |
| LIG | Last Interglacial (130 ka) |
| Ma | Mega-annum = million years ago |
| MIS19 | Marine Isotope Stage 19 (787 ka) |
| mPWP | Mid-Pliocene Warm Period (3.205 Ma) |
| PaleoSDM | Paleo species distribution model |
| PCC | Pearson correlation coefficient |
| SDM | Species distribution model |
| temp | Temperature |
Appendix A

References
- Araújo, M.B.; Williams, P.H. Selecting areas for species persistence using occurrence data. Biol. Conversat. 2000, 96, 331–345. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Chen, Y.; Lembrechts, J.J.; Hautier, Y.; Xu, D.; Li, Y.; Dong, Y.; Mao, L. Identifying divergence time and paleoclimate change hotspots for better conservation under future climate change. Biol. Conserv. 2025, 312, 111499. [Google Scholar] [CrossRef]
- Svenning, J.C.; Fløjgaard, C.; Marske, K.A.; Nógues-Bravo, D.; Normand, S. Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 2011, 30, 2930–2947. [Google Scholar] [CrossRef]
- Svenning, J.C.; Normand, S.; Kageyama, M. Glacial refugia of temperate trees in Europe: Insights from species distribution modelling. J. Ecol. 2008, 96, 1117–1127. [Google Scholar] [CrossRef]
- Worth, J.R.; Williamson, G.J.; Sakaguchi, S.; Nevill, P.G.; Jordan, G.J. Environmental niche modelling fails to predict Last Glacial Maximum refugia: Niche shifts, microrefugia or incorrect palaeoclimate estimates? Glob. Ecol. Biogeogr. 2014, 23, 1186–1197. [Google Scholar] [CrossRef]
- Mayol, M.; Riba, M.; González-Martínez, S.C.; Bagnoli, F.; de Beaulieu, J.L.; Berganzo, E.; Burgarella, C.; Dubreuil, M.; Krajmerová, D.; Paule, L.; et al. Adapting through glacial cycles: Insights from a long-lived tree (Taxus baccata). New Phytol. 2015, 208, 973–986. [Google Scholar] [CrossRef]
- Domic, A.I.; Capriles, J.M. Distribution shifts in habitat suitability and hotspot refugia of Andean tree species from the last glacial maximum to the Anthropocene. Neotrop. Biodivers. 2021, 7, 297–309. [Google Scholar] [CrossRef]
- Majeský, Ľ.; Vaculná, L.; Kobrlová, L.; Bonomi, C.; Akopian, J.A.; Aymerich, P.; Barlog, M.; Bryndzová, Š.; Delahaye, T.; Dentant, C.; et al. Tracing the evolutionary history of Dracocephalum austriacum: Insight from population genomics and species distribution modelling. Conserv. Genet. 2025; submitted. [Google Scholar] [CrossRef]
- Cruz-Jiménez, I.; Delgado-Sánchez, P.; Guerrero-González, M.D.L.L.; Puente-Martínez, R.; Flores, J.; De-Nova, J.A. Predicting geographic distribution and habitat suitability of Opuntia streptacantha in paleoclimatic, current, and future scenarios in Mexico. Ecol. Evol. 2023, 13, e10050. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, H. Mollusks: Tools in Environmental and Climate Research. Am. Malacol. Bull. 2015, 33, 310–324. [Google Scholar] [CrossRef]
- Moraitis, M.L.; Tsikopoulou, I.; Geropoulos, A.; Dimitriou, P.D.; Papageorgiou, N.; Giannoulaki, M.; Valavanis, V.; Karakassis, I. Molluscan indicator species and their potential use in ecological status assessment using species distribution modeling. Mar. Environ. Res. 2018, 140, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Krepski, T.; Cieplok, A.; Spyra, A. Predictors of Distribution and Diversity of Rare, Protected, and Endangered Freshwater Mollusks in Rivers with Various Land Use in the Context of Environmental Changes. Ecol. Evol. 2025, 15, e71209. [Google Scholar] [CrossRef]
- Inoue, K.; Lang, B.K.; Berg, D.J. Past climate change drives current genetic structure of an endangered freshwater mussel species. Mol. Ecol. 2025, 24, 1910–1926. [Google Scholar] [CrossRef]
- Kozak, K.H.; Graham, C.H.; Wiens, J. Integrating GIS-based environmental data into evolutionary biology. Trends Ecol. Evol. 2008, 23, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Kiser, A.H.; Craig, C.A.; Bonner, T.H.; Littrell, B.; Smith, C.H.; Robertson, C.R.; Wang, H.-H.; Grant, W.E.; Johnson, M.S.; Lopes, R.; et al. Creating a systematic prioritization of stream reaches for conservation of aquatic species. Ecosphere 2024, 15, e4772. [Google Scholar] [CrossRef]
- Barnes, M.A.; Patiño, R. Predicting suitable habitat for dreissenid mussel invasion in Texas based on climatic and lake physical characteristics, Manag. Biol. Invasion 2020, 11, 63–79. [Google Scholar] [CrossRef]
- O’Brien, R.S.; DiRenzo, G.V.; Roy, A.H.; Carmignani, J.; Quinones, R.M.; Rogers, J.B.; Swartz, B.I. Catchment prioritization for freshwater mussel conservation in the Northeastern United States based on distribution modelling. PLoS ONE 2025, 20, e0324387. [Google Scholar] [CrossRef] [PubMed]
- Vikhrev, I.V.; Kuehn, R.; Geist, J.; Kondakov, A.V.; Ieshko, E.P.; Chelpanovskaya, O.A.; Bolotov, I.N. Conservation genetic units under future climate change scenarios: A case of the threatened freshwater pearl mussel (Margaritifera margaritifera). Biodivers. Conserv. 2025, 34, 105–129. [Google Scholar] [CrossRef]
- Lopes-Lima, M.; Geist, J.; Egg, S.; Beran, L.; Bikashvili, A.; Van Bocxlaer, B.; Bogan, A.E.; Bolotov, I.N.; Chelpanovskaya, O.A.; Douda, K.; et al. Integrative phylogenetic, phylogeographic and morphological characterisation of the Unio crassus species complex reveals cryptic diversity with important conservation implications. Mol. Phyl. Evol. 2024, 195, 108046. [Google Scholar] [CrossRef]
- Lopes-Lima, M.; Prié, V. Unio nanus. The IUCN Red List of Threatened Species 2024: e.T215447310A215447388. Available online: https://www.iucnredlist.org/species/215447310/215447388 (accessed on 12 October 2025).
- Lopes-Lima, M.; Prié, V.; Österling, M.; Zając, T.A. Unio crassus. The IUCN Red List of Threatened Species 2024: e.T210291828A215467836. Available online: https://www.iucnredlist.org/species/210291828/215467836 (accessed on 12 October 2025).
- Denic, M.; Stoeckl, K.; Gum, B.; Geist, J. Physicochemical assessment of Unio crassus habitat quality in a small upland stream and implications for conservation. Hydrobiologia 2014, 735, 111–122. [Google Scholar] [CrossRef]
- Schneider, L.D.; Nilsson, P.A.; Österling, E.M. Evaluating temperature-and host-dependent reproduction in the parasitic freshwater mussel Unio crassus. Hydrobiologia 2018, 810, 283–293. [Google Scholar] [CrossRef]
- Stoeckl, K.; Geist, J. Hydrological and substrate requirements of the thick-shelled river mussel Unio crassus (Philipsson 1788). Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 456–469. [Google Scholar] [CrossRef]
- Vaessen, Q.; Houbrechts, G.; Van Campenhout, J.; Hambuckers, A. Which environmental factors influence the distribution patterns of an endangered freshwater mussel (Unio crassus)? Geomorphology 2024, 454, 109180. [Google Scholar] [CrossRef]
- Egg, S.; Lopes-Lima, M.; Bayerl, H.; Froufe, E.; Stoeckle, B.C.; Kuehn, R.; Geist, J. The Impact of Glacial Disturbance History Upon the Genetic Diversity of Unio crassus and Unio nanus in Europe and Implications for Conservation. Ecol. Evol. 2025, 15, e72113. [Google Scholar] [CrossRef]
- Sales, L.P.; Hayward, M.W.; Loyola, R. What do you mean by “niche”? Modern ecological theories are not coherent on rhetoric about the niche concept. Acta Oecol. 2021, 110, 103701. [Google Scholar] [CrossRef]
- Grinnell, J. The niche-relationships of the California Thrasher. Auk 2017, 34, 427–433. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, P.; Kessler, M. Climatologies at high resolution for the Earth land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef]
- Fordham, D.A.; Saltré, F.; Haythorne, S.; Wigley, T.M.; Otto-Bliesner, B.L.; Chan, K.C.; Brook, B.W. PaleoView: A tool for generating continuous climate projections spanning the last 21,000 years at regional and global scales. Ecography 2017, 40, 1348–1358. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Marshall, S.J.; Overpeck, J.T.; Miller, G.H.; Hu, A.; CAPE Last Interglacial Project members. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 2006, 311, 1751–1753. [Google Scholar] [CrossRef]
- Brown, J.L.; Hill, D.J.; Dolan, A.M.; Carnaval, A.C.; Haywood, A.M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 2018, 5, 180254. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.J. The non-analogue nature of Pliocene temperature gradients. Earth Planet. Sci. Lett. 2015, 425, 232–241. [Google Scholar] [CrossRef]
- Stigall, A.L. Using ecological niche modelling to evaluate niche stability in deep time. J. Biogeogr. 2012, 39, 772–781. [Google Scholar] [CrossRef]
- Saupe, E.E.; Hendricks, J.R.; Portell, R.W.; Dowsett, H.J.; Haywood, A.; Hunter, S.J.; Lieberman, B.S. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. R. Soc. B Proc. Biol. Sci. 2014, 281, 20141995. [Google Scholar] [CrossRef] [PubMed]
- Naimi, B.; Araújo, M.B. sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Lopes-Lima, M.; Sousa, R.; Geist, J.; Aldridge, D.C.; Araujo, R.; Bergengren, J.; Bespalaya, Y.; Bódis, E.; Burlakova, L.; Van Damme, D.; et al. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biol. Rev. 2017, 92, 572–607. [Google Scholar] [CrossRef]
- Hochwald, S. Plasticity of Life-History Traits in Unio crassus. In Ecology and Evolution of the Freshwater Mussels Unionoida; Ecological Studies, Bauer, G., Wächtler, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 145, pp. 132–134. [Google Scholar] [CrossRef]
- Zając, T.A.; Zając, K. Spawning in a threatened freshwater mussel shifts to earlier dates as a result of increasing summer mortality. Sci. Rep. 2025, 15, 7733. [Google Scholar] [CrossRef]
- Feind, S.; Geist, J.; Kuehn, R. Glacial perturbations shaped the genetic population structure of the endangered thick-shelled river mussel (Unio crassus, Philipsson 1788) in Central and Northern Europe. Hydrobiologia 2018, 810, 177–189. [Google Scholar] [CrossRef]
- Durand, J.D.; Persat, H.; Bouvet, Y. Phylogeography and postglacial dispersion of the chub (Leuciscus cephalus) in Europe. Mol. Ecol. 1999, 8, 989–997. [Google Scholar] [CrossRef]
- Seifertová, M.; Bryja, J.; Vyskočilová, M.; Martínková, N.; Šimková, A. Multiple Pleistocene refugia and post-glacial colonization in the European chub (Squalius cephalus) revealed by combined use of nuclear and mitochondrial markers. J. Biogeogr. 2012, 39, 1024–1040. [Google Scholar] [CrossRef]
- Wiens, J.J.; Graham, C.H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 519–539. [Google Scholar] [CrossRef]
- Stigall, A.L. When and how do species achieve niche stability over long time scales? Ecography 2014, 37, 1123–1132. [Google Scholar] [CrossRef]
- Hewitt, T.L.; Bergner, J.L.; Woolnough, D.A.; Zanatta, D.T. Phylogeography of the freshwater mussel species Lasmigona costata: Testing post-glacial colonization hypotheses. Hydrobiologia 2018, 810, 191–206. [Google Scholar] [CrossRef]
- Vikhrev, I.V.; Ieshko, E.P.; Kondakov, A.V.; Mugue, N.S.; Bovykina, G.V.; Efremov, D.A.; Bulakov, A.G.; Tomilova, A.A.; Yunitsyna, O.A.; Bolotov, I.N. Postglacial expansion routes and mitochondrial genetic diversification of the freshwater pearl mussel in Europe and North America. Diversity 2022, 14, 477. [Google Scholar] [CrossRef]





| Bioclimatic Variable | Variable Description | VIF |
|---|---|---|
| bio1 | Annual mean temperature | 3.08 |
| bio2 1 | Mean diurnal range [mean of monthly (maximum temp. − minimum temp.)] | 1.78 |
| bio3 1 | Isothermality (bio2/bio7) (×100) | 29.31 |
| bio4 | Temperature seasonality (standard deviation × 100) | 2.73 |
| bio5 1 | Maximum temperature of the warmest month | 11,014.53 |
| bio6 1 | Minimum temperature of the coldest month | 15,900.20 |
| bio7 1 | Temperature annual range (bio5 − bio6) | 16,116.01 |
| bio8 | Mean temperature of wettest quarter | 1.99 |
| bio9 | Mean temperature of driest quarter | 8.89 |
| bio10 | Mean temperature of warmest quarter | 1242.30 |
| bio11 | Mean temperature of coldest quarter | 3003.34 |
| bio12 | Annual precipitation | 95.59 |
| bio13 | Precipitation of wettest month | 230.42 |
| bio14 | Precipitation of driest month | 197.45 |
| bio15 | Precipitation seasonality (coefficient of variation) | 1.38 |
| bio16 | Precipitation of wettest quarter | 307.13 |
| bio17 | Precipitation of driest quarter | 224.78 |
| bio18 | Precipitation of warmest quarter | 2.82 |
| bio19 | Precipitation of coldest quarter | 2.35 |
| Variable Description | U. crassus | U. nanus |
|---|---|---|
| Annual mean temperature | 41.3 | 21.6 |
| Mean diurnal range [mean of monthly (maximum temp. − minimum temp.)] | 2.7 | 17.4 |
| Temperature seasonality (standard deviation × 100) | 19.6 | 27.1 |
| Mean temperature of wettest quarter | 3.1 | 2.4 |
| Precipitation seasonality (coefficient of variation) | 2.3 | 11.5 |
| Precipitation of warmest quarter | 30.9 | 20.0 |
| AUCtest | 0.859 ± 0.059 SD | 0.951 ± 0.021 SD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egg, S.; Kuehn, R.; Geist, J. Environmental Niche Differentiation and Past Colonization Dynamics of Two European Freshwater Mussels (Unio crassus and Unio nanus). Diversity 2025, 17, 779. https://doi.org/10.3390/d17110779
Egg S, Kuehn R, Geist J. Environmental Niche Differentiation and Past Colonization Dynamics of Two European Freshwater Mussels (Unio crassus and Unio nanus). Diversity. 2025; 17(11):779. https://doi.org/10.3390/d17110779
Chicago/Turabian StyleEgg, Sarah, Ralph Kuehn, and Juergen Geist. 2025. "Environmental Niche Differentiation and Past Colonization Dynamics of Two European Freshwater Mussels (Unio crassus and Unio nanus)" Diversity 17, no. 11: 779. https://doi.org/10.3390/d17110779
APA StyleEgg, S., Kuehn, R., & Geist, J. (2025). Environmental Niche Differentiation and Past Colonization Dynamics of Two European Freshwater Mussels (Unio crassus and Unio nanus). Diversity, 17(11), 779. https://doi.org/10.3390/d17110779

