A Fossil Record of Spores before Sporophytes
Abstract
:1. Introduction
2. The Historical Use of Spores as Land Plant Proxies
3. Phylogeny and the Evo-Devo Approach to the Evolution of Land Plants
4. The Cambro-Ordovician Fossil Sporomorph Record
5. The Evolutionary Origin of the Plant Spore as Evidenced in the Fossil Record
6. The Evolution of Spore Development
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Margulis, L.; Schwartz, K.V. Five Kingdoms; W H Freeman & Company: New York, NY, USA, 1982. [Google Scholar]
- Knoll, A.H. The Multiple Origins of Complex Multicellularity. Annu. Rev. Earth Planet. Sci. 2011, 39, 217–239. [Google Scholar] [CrossRef]
- Bonner, J.T. The Evolution of Complexity; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Niklas, K.J.; Kutschera, U. The Evolution of the Land Plant Life Cycle. New Phytol. 2010, 185, 27–41. [Google Scholar] [CrossRef]
- Becker, B.; Marin, B. Streptophyte Algae and the Origin of Embryophytes. Ann. Bot. 2009, 103, 999–1004. [Google Scholar] [CrossRef]
- McCourt, R.M.; Lewis, L.A.; Strother, P.K.; Delwiche, C.F.; Wickett, N.J.; Vries, J.; Bowman, J.L. Green Land: Multiple Perspectives on Green Algal Evolution and the Earliest Land Plants. Am. J. Bot. 2023, 110, e16175. [Google Scholar] [CrossRef]
- Bower, F.O. The Origin of a Land Flora: A Theory Based on the Facts of Alternation; Macmillan and Co., Ltd.: London, UK, 1908. [Google Scholar]
- Church, A.H. Thallasiophyta and the Subaerial Transmigration; Oxford University Press: Oxford, UK, 1919; Volume 3. [Google Scholar]
- Bower, F.O. Primitive Land Pants; Macmillan and Co., Ltd.: London, UK, 1935. [Google Scholar]
- Edwards, D.; Kenrick, P. The Early Evolution of Land Plants, from Fossils to Genomics: A Commentary on Lang (1937) “On the Plant-Remains from the Downtonian of England and Wales”. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140343. [Google Scholar] [CrossRef] [PubMed]
- Mishler, B.D.; Churchill, S.P. Transition to a Land Flora: Phylogenetic Relationships of the Green Algae and Bryophytes. Cladistics 1985, 1, 305–328. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.-L.; Taylor, A.B.; Fine, I. A Molecular Temporal Evolutionary Framework of Land Plants and the Age of Angiosperms. Ann. Mo. Bot. Gard. 2024. [Google Scholar]
- Qiu, Y.-L.; Mishler, B. Relationships Among the Bryophytes and Vascular Plants: A Case Study in Deep-Time Reconstructions. Diversity 2024. [Google Scholar]
- Wickett, N.J.; Mirarab, S.; Nguyen, N.; Warnow, T.; Carpenter, E.; Matasci, N.; Ayyampalayam, S.; Barker, M.S.; Burleigh, J.G.; Gitzendanner, M.A.; et al. Phylotranscriptomic Analysis of the Origin and Early Diversification of Land Plants. Proc. Natl. Acad. Sci. USA 2014, 111, E4859–E4868. [Google Scholar] [CrossRef]
- Timme, R.E.; Bachvaroff, T.R.; Delwiche, C.F. Broad Phylogenomic Sampling and the Sister Lineage of Land Plants. PLoS ONE 2012, 7, e29696. [Google Scholar] [CrossRef]
- Leliaert, F.; Tronholm, A.; Lemieux, C.; Turmel, M.; DePriest, M.S.; Bhattacharya, D.; Karol, K.G.; Fredericq, S.; Zechman, F.W.; Lopez-Bautista, J.M. Chloroplast Phylogenomic Analyses Reveal the Deepest-Branching Lineage of the Chlorophyta, Palmophyllophyceae Class. Nov. Sci. Rep. 2016, 6, 25367. [Google Scholar] [CrossRef] [PubMed]
- Wodniok, S.; Brinkmann, H.; Glöckner, G.; Heidel, A.J.; Philippe, H.; Melkonian, M.; Becker, B. Origin of Land Plants: Do Conjugating Green Algae Hold the Key? BMC Evol. Biol. 2011, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, L.; Li, H.; Sahu, S.K.; Wang, H.; Xu, Y.; Xian, W.; Song, B.; Liang, H.; Cheng, S.; et al. Genomes of Early-Diverging Streptophyte Algae Shed Light on Plant Terrestrialization. Nat. Plants 2020, 6, 95–106. [Google Scholar] [CrossRef]
- Harris, B.J.; Clark, J.W.; Schrempf, D.; Szöllősi, G.J.; Donoghue, P.C.J.; Hetherington, A.M.; Williams, T.A. Divergent Evolutionary Trajectories of Bryophytes and Tracheophytes from a Complex Common Ancestor of Land Plants. Nat. Ecol. Evol. 2022, 6, 1634–1643. [Google Scholar] [CrossRef] [PubMed]
- de Vries, J.; Archibald, J.M. Plant Evolution: Landmarks on the Path to Terrestrial Life. New Phytol. 2018, 217, 1428–1434. [Google Scholar] [CrossRef]
- Graham, L.E. Coleochaete and the Origin of Land Plants. Am. J. Bot. 1984, 71, 603–608. [Google Scholar] [CrossRef]
- Delwiche, C.F.; Graham, L.E.; Thomson, N. Lignin-Like Compounds and Sporopollenin in Coleochaete, an Algal Model for Land Plant Ancestry. Science 1989, 245, 399–401. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.E. The Occurrence and Phylogenetic Significance of Putative Placental Transfer Cells in the Green Alga Coleochaete. Am. J. Bot. 1983, 70, 113–120. [Google Scholar] [CrossRef]
- Cook, M.E.; Graham, L.E. Structural Similarities between Surface Layers of Selected Charophycean Algae and Bryophytes and the Cuticles of Vascular Plants. Int. J. Plant Sci. 1998, 159, 780–787. [Google Scholar] [CrossRef]
- Su, D.; Yang, L.; Shi, X.; Ma, X.; Zhou, X.; Hedges, S.B.; Zhong, B. Large-Scale Phylogenomic Analyses Reveal the Monophyly of Bryophytes and Neoproterozoic Origin of Land Plants. Mol. Biol. Evol. 2021, 38, 3332–3344. [Google Scholar] [CrossRef]
- Clarke, J.T.; Warnock, R.C.M.; Donoghue, P.C.J. Establishing a Time-Scale for Plant Evolution. New Phytol. 2011, 192, 266–301. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.L.; Puttick, M.N.; Clark, J.W.; Edwards, D.; Kenrick, P.; Pressel, S.; Wellman, C.H.; Yang, Z.; Schneider, H.; Donoghue, P.C.J. The Timescale of Early Land Plant Evolution. Proc. Natl. Acad. Sci. USA 2018, 115, E2274–E2283. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Foster, C.S.P.; Zhu, T.; Yao, R.; Duchêne, D.A.; Ho, S.Y.W.; Zhong, B. Accounting for Uncertainty in the Evolutionary Timescale of Green Plants through Clock-Partitioning and Fossil Calibration Strategies. Syst. Biol. 2019, 69, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.; Feehan, J.; Smith, D.G. A Late Wenlock Flora from Co. Tipperary, Ireland. Bot. J. Linn. Soc. 1983, 86, 19–36. [Google Scholar] [CrossRef]
- Libertín, M.; Kvaček, J.; Bek, J.; Žárský, V.; Štorch, P. Sporophytes of Polysporangiate Land Plants from the Early Silurian Period May Have Been Photosynthetically Autonomous. Nat. Plants 2018, 4, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Kenrick, P.; Wellman, C.H.; Schneider, H.; Edgecombe, G.D. A Timeline for Terrestrialization: Consequences for the Carbon Cycle in the Palaeozoic. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 519–536. [Google Scholar] [CrossRef] [PubMed]
- Wellman, C.H. The Invasion of the Land by Plants: When and Where? New Phytol. 2010, 188, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Wellman, C.H. Dating the Origin of Land Plants. In Telling the Evolutionary Time; Donoghue, P.C.J., Smith, M.P., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 119–141. ISBN 020364252X. [Google Scholar]
- Wellman, C.H.; Gray, J. The Microfossil Record of Early Land Plants. Philos. Trans. R. Soc. B Biol. Sci. 2000, 355, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Wellman, C.H.; Cascales-Miñana, B.; Servais, T. Terrestrialization in the Ordovician. Geol. Soc. Lond. Spec. Publ. 2022, 532, 171–190. [Google Scholar] [CrossRef]
- Wellman, C.H.; Berry, C.M.; Davies, N.S.; Lindemann, F.-J.; Marshall, J.E.A.; Wyatt, A. Low Tropical Diversity during the Adaptive Radiation of Early Land Plants. Nat. Plants 2022, 8, 104–109. [Google Scholar] [CrossRef]
- Strother, P.K.; Foster, C. A Fossil Record of Land Plant Origins from Charophyte Algae. Science 2021, 373, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.H.; Strother, P.K. Silurian Spores and Cryptospores from the Arisaig Group, Nova Scotia, Canada. Palynology 2001, 25, 127–177. [Google Scholar] [CrossRef]
- Strother, P.K.; Traverse, A.; Vecoli, M. Cryptospores from the Hanadir Shale Member of the Qasim Formation, Ordovician (Darriwilian) of Saudi Arabia: Taxonomy and Systematics. Rev. Palaeobot. Palynol. 2015, 212, 97–110. [Google Scholar] [CrossRef]
- Wellman, C.H.; Steemans, P.; Miller, M.A. Spore Assemblages from Upper Ordovician and Lowermost Silurian Sediments Recovered from the Qusaiba-1 Shallow Core Hole, Qasim Region, Central Saudi Arabia. Rev. Palaeobot. Palynol. 2015, 212, 111–126. [Google Scholar] [CrossRef]
- Wellman, C.H.; Steemans, P.; Vecoli, M. Chapter 29 Palaeophytogeography of Ordovician–Silurian Land Plants. Geol. Soc. Lond. Mem. 2013, 38, 461–476. [Google Scholar] [CrossRef]
- Steemans, P. Miospore Evolution from the Ordovician to the Silurian. Rev. Palaeobot. Palynol. 2000, 113, 189–196. [Google Scholar] [CrossRef]
- Tomescu, A.M.F.; Bomfleur, B.; Bippus, A.C.; Savoretti, A. Transformative Paleobotany; Elsevier: Amsterdam, The Netherlands, 2018; pp. 375–416. [Google Scholar] [CrossRef]
- Floyd, S.K.; Bowman, J.L. The Ancestral Developmental Tool Kit of Land Plants. Int. J. Plant Sci. 2007, 168, 1–35. [Google Scholar] [CrossRef]
- Bowman, J.L. The Origin of a Land Flora. Nat. Plants 2022, 8, 1352–1369. [Google Scholar] [CrossRef] [PubMed]
- Bowman, J.L.; Briginshaw, L.N.; Fisher, T.J.; Flores-Sandoval, E. Something Ancient and Something Neofunctionalized-Evolution of Land Plant Hormone Signaling Pathways. Curr. Opin. Plant Biol. 2019, 47, 64–72. [Google Scholar] [CrossRef]
- Bower, F.O. On Antithetic as Distinct from Homologous Alternation of Generations in Plants. Ann. Bot. 1890, 4, 347–370. [Google Scholar] [CrossRef]
- Bower, F.O. Size and Form in Plants; Macmillan and Co., Ltd.: London, UK, 1935. [Google Scholar]
- Čelakovsky, L. Ueber Die Verschiedenen Formen Und Die Bedeutung Des Generationwechsels Der Pflanzen. Sitzungsberichte Koeniglichen Boehmischen Ges. Wiss. Prag 1874, 2, 21–61. [Google Scholar]
- Haig, D. Homologous Versus Antithetic Alternation of Generations and the Origin of Sporophytes. Bot. Rev. 2008, 74, 395–418. [Google Scholar] [CrossRef]
- Lang, W.H. On the Plant-Remains from the Downtonian of England and Wales. Philos. Trans. R. Soc. Lond. 1937, 225, 245–291. [Google Scholar]
- Edwards, D.; Feehan, J. Records of Cooksonia-Type Sporangia from Late Wenlock Strata in Ireland. Nature 1980, 287, 41–42. [Google Scholar] [CrossRef]
- Hoffmeister, W.S. Lower Silurian Plant Spores from Libya. Micropaleontology 1959, 5, 331. [Google Scholar] [CrossRef]
- Steemans, P. Cryptospores and Spores from the Ordovician to the Llandovery. A Review. Acta Univ. Carol.—Geol. 1999, 43, 271–273. [Google Scholar]
- Chaloner, W.G. The Rise of the First Land Plants. Biol. Rev. 1970, 45, 353–377. [Google Scholar] [CrossRef]
- Shaw, A.J.; Devos, N.; Cox, C.J.; Boles, S.B.; Shaw, B.; Buchanan, A.M.; Cave, L.; Seppelt, R. Peatmoss (Sphagnum) Diversification Associated with Miocene Northern Hemisphere Climatic Cooling? Mol. Phylogenet. Evol. 2010, 55, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Boros, A.; Járai-Komlódi, M. An Atlas of European Moss Spores; Akadémiai Kiadó: Budapest, Hungary, 1975. [Google Scholar]
- Lomax, B.H.; Fraser, W.T.; Sephton, M.A.; Callaghan, T.V.; Self, S.; Harfoot, M.; Pyle, J.A.; Wellman, C.H.; Beerling, D.J. Plant Spore Walls as a Record of Long-Term Changes in Ultraviolet-B Radiation. Nat. Geosci. 2008, 1, 592–596. [Google Scholar] [CrossRef]
- Lake, J.A.; Field, K.J.; Davey, M.P.; Beerling, D.J.; Lomax, B.H. Metabolomic and Physiological Responses Reveal Multi-Phasic Acclimation of Arabidopsis Thaliana to Chronic UV Radiation. Plant Cell Environ. 2009, 32, 1377–1389. [Google Scholar] [CrossRef]
- Lomax, B.H.; Fraser, W.T.; Harrington, G.; Blackmore, S.; Sephton, M.A.; Harris, N.B.W. A Novel Palaeoaltimetry Proxy Based on Spore and Pollen Wall Chemistry. Earth Planet Sci. Lett. 2012, 353, 22–28. [Google Scholar] [CrossRef]
- Jardine, P.E.; Abernethy, F.A.J.; Lomax, B.H.; Gosling, W.D.; Fraser, W.T. Shedding Light on Sporopollenin Chemistry, with Reference to UV Reconstructions. Rev. Palaeobot. Palynol. 2017, 238, 1–6. [Google Scholar] [CrossRef]
- Liu, F.; Peng, H.; Marshall, J.E.A.; Lomax, B.H.; Bomfleur, B.; Kent, M.S.; Fraser, W.T.; Jardine, P.E. Dying in the Sun: Direct Evidence for Elevated UV-B Radiation at the End-Permian Mass Extinction. Sci. Adv. 2023, 9, eabo6102. [Google Scholar] [CrossRef] [PubMed]
- Wellman, C.H. The Evolution of Plant Physiology; Elsevier: Amsterdam, The Netherlands, 2004; pp. 43–63. [Google Scholar] [CrossRef]
- Gray, J.; Boucot, A.J. Early Silurian Spore Tetrads from New York: Earliest New World Evidence for Vascular Plants? Science 1971, 173, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Pratt, L.M.; Phillips, T.L.; Dennison, J.M. Evidence of Non-Vascular Land Plants from the Early Silurian (Llandoverian) of Virginia, U.S.A. Rev. Palaeobot. Palynol. 1978, 25, 121–149. [Google Scholar] [CrossRef]
- Strother, P.K.; Traverse, A. Plant Microfossils from Llandoverian and Wenlockian Rocks of Pennsylvania. Palynology 1979, 3, 1–21. [Google Scholar] [CrossRef]
- Johnson, N.G. Early Silurian Palynomorphs from the Tuscarora Formation in Central Pennsylvania and Their Paleobotanical and Geological Significance. Rev. Palaeobot. Palynol. 1985, 45, 307–359. [Google Scholar] [CrossRef]
- Banks, H.P. Early Vascular Land Plants: Proof and Conjecture. BioScience 1975, 25, 730–737. [Google Scholar] [CrossRef]
- Richardson, J.B.; Ford, J.H.; Parker, F. Miospores, Correlation and Age of Some Scottish Lower Old Red Sandstone Sediments from the Strathmore Region (Fife and Angus). J. Micropalaeontol. 1984, 3, 109–124. [Google Scholar] [CrossRef]
- Gray, J.; Boucot, A.J. Early Vascular Land Plants: Proof and Conjecture. Lethaia 1977, 10, 145–174. [Google Scholar] [CrossRef]
- Gray, J. The Microfossil Record of Early Land Plants: Advances in Understanding of Early Terrestrialization, 1970–1984. Philos. Trans. R. Soc. Lond. Ser. B 1985, 309, 167–192. [Google Scholar] [CrossRef]
- Brown, R.C.; Lemmon, B.E. Spores before Sporophytes: Hypothesizing the Origin of Sporogenesis at the Algal–Plant Transition. New Phytol. 2011, 190, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.A.; Strother, P.K. Plant Evolution: A Tapetum Is Now Effectively Present in All Land Plant Lineages. Curr. Biol. 2024, 34, R146–R148. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.; Massa, D.; Boucot, A.J. Caradocian Land Plant Microfossils from Libya. Geology 1982, 10, 197–201. [Google Scholar] [CrossRef]
- Vecoli, M.; Wellman, C.H.; Gerrienne, P.; Hérissé, A.L.; Steemans, P. Middle Ordovician Cryptospores from the Saq-Hanadir Transitional Beds in the QSIM-801 Well, Saudi Arabia. Rev. Micropaléontol. 2017, 60, 319–331. [Google Scholar] [CrossRef]
- Strother, P.K.; Beck, J.H. Spore-like Microfossils from Middle Cambrian Strata: Expanding the Meaning of the Term Cryptospore. In Pollen and Spores; Harley, M.M., Morton, C.M., Blackmore, S., Eds.; The Royal Botanic Gardens, Kew: London, UK, 2000; pp. 413–424. ISBN 1 900347 95 4. [Google Scholar]
- Strother, P.K. Cryptospores: The Origin and Early Evolution of the Terrestrial Flora. Paléontol. Soc. Pap. 2000, 6, 3–20. [Google Scholar] [CrossRef]
- Steemans, P.; Wellman, C.H. A Key for the Identification of Cryptospores. Palynology 2018, 42, 492–503. [Google Scholar] [CrossRef]
- Edwards, D.; Morris, J.L.; Axe, L.; Duckett, J.G.; Pressel, S.; Kenrick, P. Piecing Together the Eophytes—A New Group of Ancient Plants Containing Cryptospores. New Phytol. 2022, 233, 1440–1455. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.; Morris, J.L.; Axe, L.; Duckett, J.G. Picking up the Pieces: New Charcoalified Plant Mesofossils (Eophytes) from a Lower Devonian Lagerstätte in the Welsh Borderland, UK. Rev. Palaeobot. Palynol. 2022, 297, 104567. [Google Scholar] [CrossRef]
- Edwards, D.; Morris, J.L.; Richardson, J.B.; Kenrick, P. Cryptospores and Cryptophytes Reveal Hidden Diversity in Early Land Floras. New Phytol. 2014, 202, 50–78. [Google Scholar] [CrossRef]
- Morris, J.L.; Edwards, D.; Richardson, J.B.; AXE, L. New Dyad-producing Plants from the Lower Devonian (Lochkovian) of the Welsh Borderland. Bot. J. Linn. Soc. 2012, 169, 569–595. [Google Scholar] [CrossRef]
- Edwards, D.; Wellman, C.H.; Axe, L. Tetrads in Sporangia and Spore Masses from the Upper Silurian and Lower Devonian of the Welsh Borderland. Bot. J. Linn. Soc. 1999, 130, 111–156. [Google Scholar] [CrossRef]
- Wellman, C.H.; Edwards, D.; Axe, L. Permanent Dyads in Sporangia and Spore Masses from the Lower Devonian of the Welsh Borderland. Bot. J. Linn. Soc. 1998, 127, 117–147. [Google Scholar] [CrossRef]
- Fanning, U.; Richardson, J.B.; Edwards, D. A Review of In Situ Spores in Silurian Land Plants. In Pollen and Spores; Blackmore, S., Barnes, S.H., Eds.; The Systematics Association: Reading, UK, 1991; Volume 44, pp. 25–47. [Google Scholar]
- Renzaglia, K.S.; Crandall-Stotler, B.; Pressel, S.; Duckett, J.G.; Schuette, S.; Strother, P.K. Permanent Spore Dyads Are Not “A Thing of the Past”: On Their Occurrence in the Liverwort Haplomitrium (Haplomitriopsida). Bot. J. Linn. Soc. 2015, 179, 658–669. [Google Scholar] [CrossRef]
- Baldwin, C.; Strother, P.; Beck, J.; Rose, E. Palæoecology of the Bright Angel Shale in the Eastern Grand Canyon, Arizona, U.S.A. Incorporating Sedimentological, Ichnological and Palynological Data. Geol. Soc. Lond. Spec. Publ. 2004, 228, 213–236. [Google Scholar] [CrossRef]
- Strother, P.K.; Wood, G.D.; Taylor, W.A.; Beck, J.H. Middle Cambrian Cryptospores and the Origin of Land Plants. Mem. Assoc. Australas. Palaeontol. 2004, 29, 99–113. [Google Scholar]
- Strother, P.K. A Classification Schema for the Cryptospores. Palynology 1991, 15, 219–236. [Google Scholar] [CrossRef]
- Bowman, J.L.; Briginshaw, L.N.; Florent, S.N. Evolution and Co-Option of Developmental Regulatory Networks in Early Land Plants. Curr. Top. Dev. Biol. 2019, 131, 35–53. [Google Scholar] [CrossRef]
- Strother, P. An Evo-Devo Perspective on No Ordovician Land Plants. Est. J. Earth Sci. 2023, 72, 102–105. [Google Scholar] [CrossRef]
- Tomescu, A.M.F. Development: Paleobotany at the High Table of Evo–Devo. Curr. Biol. 2016, 26, R505–R508. [Google Scholar] [CrossRef]
- Rothwell, G.W.; Wyatt, S.E.; Tomescu, A.M.F. Plant Evolution at the Interface of Paleontology and Developmental Biology: An Organism-centered Paradigm. Am. J. Bot. 2014, 101, 899–913. [Google Scholar] [CrossRef] [PubMed]
- Strother, P.K.; Taylor, W.A. The Evolutionary Origin of the Plant Spore in Relation to the Antithetic Origin of the Plant Sporophyte. In Transformative Paleobotany; Krings, M., Harper, C.J., Cuneo, N.R., Rothwell, G.W., Eds.; Elsevier: London, UK, 2018; pp. 3–20. ISBN 9780128130124. [Google Scholar]
- Strother, P.K.; Taylor, W.A.; Beck, J.H.; Vecoli, M. Ordovician Spore ‘Thalli’ and the Evolution of the Plant Sporophyte. Palynology 2017, 41, 57–68. [Google Scholar] [CrossRef]
- Sebe-Pedros, A.; Degnan, B.M.; Ruiz-Trillo, I. The Origin of Metazoa: A Unicellular Perspective. Nat. Rev. Genet. 2017, 18, 498–512. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.P. Homology, Genes, and Evolutionary Innovation; Princeton University Press: Princeton, NJ, USA, 2014; ISBN 978-0-691-15646-0. [Google Scholar]
- Tomescu, A.M.F.; Rothwell, G.W. Fossils and Plant Evolution: Structural Fingerprints and Modularity in the Evo-Devo Paradigm. EvoDevo 2022, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.B. Lower and Middle Paleozoic Records of Terrestrial Palynomorphs. In Palynology: Principles and Applications; Jansonius, J., McGregor, D.C., Eds.; American Association of Stratigraphic Palynologists Foundation: Houstin, USA, 1996; Volume 1, pp. 555–574. [Google Scholar]
- Steemans, P.; Herisse, A.L.; Melvin, J.; Miller, M.A.; Paris, F.; Verniers, J.; Wellman, C.H. Origin and Radiation of the Earliest Vascular Land Plants. Science 2009, 324, 353. [Google Scholar] [CrossRef]
- Burgess, N.D.; Richardson, J.B. Silurian Cryptospores and Miospores from the Type Wenlock Area, Shropshire, England. Palaeontology 1991, 34, 601–638. [Google Scholar]
- Beck, J.H.; Strother, P.K. Miospores and Cryptospores from the Silurian Section at Allenport, Pennsylvania, USA. J. Paleontol. 2008, 82, 857–883. [Google Scholar] [CrossRef]
- Vavrdová, M. New Acritarchs and Miospores from the Late Ordovician Hlásná Treban, Czechoslovakia. Cas. Mineral. Geol. 1989, 34, 403–419. [Google Scholar]
- Hemsley, A.R. The Origin of the Land Plant Sporophyte: An Interpolational Scenario. Biol. Rev. 1994, 69, 263–273. [Google Scholar] [CrossRef]
- Graham, L.E. Origin of Land Plants; John Wiley & Sons, Inc: New York, NY, USA, 1993. [Google Scholar]
- Smith, G.M. The Freshwater Algae of the United States; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1933. [Google Scholar]
- Strother, P.K.; Al-Hajri, S.; Traverse, A. New Evidence for Land Plants from the Lower Middle Ordovician of Saudi Arabia. Geology 1996, 24, 55–58. [Google Scholar] [CrossRef]
- Steemans, P.; Wellman, C.H.; Breuer, P. The Presence and Importance of Quadrisporites in the Tawil Formation, Lochkovian, Saudi Arabia. In Proceedings of the 11th European Palaeobotany and Palynology Conference, Stockholm, Sweden, 19–22 June 2022. [Google Scholar]
- Wellman, C.H.; Edwards, D.; Axe, L. Ultrastructure of Laevigate Hilate Spores in Sporangia and Spore Masses from the Upper Silurian and Lower Devonian of the Welsh Borderland. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1998, 353, 1983–2004. [Google Scholar] [CrossRef]
- Taylor, W.A.; Strother, P.K.; Vecoli, M.; Al-Hajri, S. Wall Ultrastructure of the Oldest Embryophytic Spores: Implications for Early Land Plant Evolution. Rev. Micropaléontol. 2017, 60, 281–288. [Google Scholar] [CrossRef]
- Badawy, A.S.; Mehlqvist, K.; Vajda, V.; Ahlberg, P.; Calner, M. Late Ordovician (Katian) Spores in Sweden: Oldest Land Plant Remains from Baltica. GFF 2014, 136, 16–21. [Google Scholar] [CrossRef]
- Ghavidel-Syooki, M.; Piri-Kangarshahi, M.H. Biostratigraphy of Acritarchs, Chitinozoans, and Miospores from Upper Ordovician Sequences in Kuh-e Boghou, Southwest of Kashmar, Eastern Central Iran: Stratigraphic and Paleogeographic Implications. Rev. Palaeobot. Palynol. 2021, 284, 104337. [Google Scholar] [CrossRef]
- Ghavidel-Syooki, M. Cryptospore and Trilete Spore Assemblages from the Late Ordovician (Katian–Hirnantian) Ghelli Formation, Alborz Mountain Range, Northeastern Iran: Palaeophytogeographic and Palaeoclimatic Implications. Rev. Palaeobot. Palynol. 2017, 244, 217–240. [Google Scholar] [CrossRef]
- Rubinstein, C.V.; Vajda, V. Baltica Cradle of Early Land Plants? Oldest Record of Trilete Spores and Diverse Cryptospore Assemblages; Evidence from Ordovician Successions of Sweden. GFF 2019, 141, 181–190. [Google Scholar] [CrossRef]
- Wang, K.; Liu, B.-C.; Wang, Y.; Xu, H.-H. A Palynoflora of Southern Xinjiang, China, and the Proximity of the Tarim Plate to Western Gondwana during the Llandovery (Silurian). J. Asian Earth Sci. 2023, 255, 105769. [Google Scholar] [CrossRef]
- Wang, K.; Xu, H.-H.; Yin, L.-M. A Palynological Assemblage from the Cambrian (Series 2, Stage 4) of Shandong Province, China, and Its Implications to the Transition from Algae to Land Plants. Rev. Palaeobot. Palynol. 2022, 301, 104645. [Google Scholar] [CrossRef]
- Strother, P.K. Systematics and Evolutionary Significance of Some New Cryptospores from the Cambrian of Eastern Tennessee, USA. Rev. Palaeobot. Palynol. 2016, 227, 28–41. [Google Scholar] [CrossRef]
- Taylor, W.A.; Strother, P.K. Ultrastructure, Morphology, and Topology of Cambrian Palynomorphs from the Lone Rock Formation, Wisconsin, USA. Rev. Palaeobot. Palynol. 2009, 153, 296–309. [Google Scholar] [CrossRef]
- Burgess, N.D. Silurian Cryptospores and Miospores from the Type Llandovery Area, South-West Wales. Palaeontology 1991, 34, 575–599. [Google Scholar]
- Taylor, W.A.; Strother, P.K. Ultrastructure of Some Cambrian Palynomorphs from the Bright Angel Shale, Arizona, USA. Rev. Palaeobot. Palynol. 2008, 151, 41–50. [Google Scholar] [CrossRef]
- Taylor, W.A. Laminae in Palynomorph Walls from the Middle Cambrian–Early Devonian. Rev. Palaeobot. Palynol. 2009, 156, 7–13. [Google Scholar] [CrossRef]
- Yin, L.; Zhao, Y.; Bian, L.; Peng, J. Comparison between Cryptospores from the Cambrian Log Cabin Member, Pioche Shale, Nevada, USA and Similar Specimens from the Cambrian Kaili Formation, Guizhou, China. Sci. China Earth Sci. 2013, 56, 703–709. [Google Scholar] [CrossRef]
- Graham, L.E.; Arancibia-Avila, P.; Taylor, W.A.; Strother, P.K.; Cook, M.E. Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) Models Early Plant Adaptation to Land. Am. J. Bot. 2012, 99, 130–144. [Google Scholar] [CrossRef]
- Haig, D. What Do We Know about Charophyte (Streptophyta) Life Cycles? J. Phycol. 2010, 46, 860–867. [Google Scholar] [CrossRef]
- Haig, D. Coleochaete and the Origin of Sporophytes. Am. J. Bot. 2015, 102, 417–422. [Google Scholar] [CrossRef]
- Haig, D. Living Together and Living Apart: The Sexual Lives of Bryophytes. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150535. [Google Scholar] [CrossRef]
- Brown, R.C.; Lemmon, B.E. Preprophasic Microtubule Systems and Development of the Mitotic Spindle in Hornworts (Bryophyta). Protoplasma 1988, 143, 11–21. [Google Scholar] [CrossRef]
- Brown, R.C.; Lemmon, B.E. Microtubules Associated with Simultaneous Cytokinesis of Coenocytic Microsporocytes. Am. J. Bot. 1988, 75, 1848–1856. [Google Scholar] [CrossRef]
- Brown, R.C.; Lemmon, B.E. Cytokinesis Occurs at Boundaries of Domains Delimited by Nuclear-Based Microtubules in Sporocytes of Conocephalum Conicum (Bryophyta). Cell Motil. Cytoskelet. 1988, 11, 139–146. [Google Scholar] [CrossRef]
- Brown, R.C.; Lemmon, B.E.; Shimamura, M. Diversity in Meiotic Spindle Origin and Determination of Cytokinetic Planes in Sporogenesis of Complex Thalloid Liverworts (Marchantiopsida). J. Plant Res. 2010, 123, 589–605. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, M.; Brown, R.C.; Lemmon, B.E.; Akashi, T.; Mizuno, K.; Nishihara, N.; Tomizawa, K.-I.; Yoshimoto, K.; Deguchi, H.; Hosoya, H.; et al. Gamma-Tubulin in Basal Land Plants: Characterization, Localization, and Implication in the Evolution of Acentriolar Microtubule Organizing Centers. Plant Cell Online 2003, 16, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.W.; McBride, G.E. The Life History of Coleochaete scutata (Chlorophyceae) Studied by a Feulgen Microspectrophotometric Analysis of the DNA Cycle1,2. J. Phycol. 1976, 12, 29–35. [Google Scholar] [CrossRef]
- Graham, L.E. The Origin of the Life Cycle of Land Plants: A Simple Modification in the Life Cycle of an Extinct Green Alga Is the Likely Origin of the First Land Plants. Am. Sci. 1985, 73, 178–186. [Google Scholar] [CrossRef]
- Blackmore, S. Morphology, Development, and Systematic Relevance of Pollen and Spores; Plant Systematics and Evolution; Springer: Vienna, Austria, 1990; pp. 1–12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strother, P.K.; Taylor, W.A. A Fossil Record of Spores before Sporophytes. Diversity 2024, 16, 428. https://doi.org/10.3390/d16070428
Strother PK, Taylor WA. A Fossil Record of Spores before Sporophytes. Diversity. 2024; 16(7):428. https://doi.org/10.3390/d16070428
Chicago/Turabian StyleStrother, Paul K., and Wilson A. Taylor. 2024. "A Fossil Record of Spores before Sporophytes" Diversity 16, no. 7: 428. https://doi.org/10.3390/d16070428
APA StyleStrother, P. K., & Taylor, W. A. (2024). A Fossil Record of Spores before Sporophytes. Diversity, 16(7), 428. https://doi.org/10.3390/d16070428