Determinants of Butterfly Community Structure and Composition at the Local Habitat Level: Importance of Neighboring Vegetation and Management Status: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Butterfly Survey
2.3. Explanatory Variables
2.4. Data Analysis
3. Results
4. Discussion
4.1. Determinants of Butterfly Community Structure and Composition
4.2. Characteristics of the Butterfly Groups
4.3. Conservation Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. List of Butterfly Species Observed in the Present Study, and the Annual Total Number of Individuals of Each Species in Each Transect, Corresponding to Response Variables
Symbol in the PCA | Transect (Habitat Type) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | 1 (D) | 2 (D) | 3 (C) | 4 (C) | 5 (A) | 6 (A) | 7 (B) | 8 (B) | 9 (E) | 10 (E) | 11 (E) | Total | |
Hesperiidae | |||||||||||||
Daimio tethys | b26 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 5 |
Choaspes benjaminii | b30 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Leptalina unicolor | b21 | 10 | 1 | 20 | 17 | 8 | 9 | 12 | 10 | 2 | 0 | 5 | 94 |
Ochlodes venatus | b22 | 2 | 5 | 13 | 3 | 2 | 4 | 5 | 5 | 0 | 0 | 3 | 42 |
Ochlodes ochraceus | b25 | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 1 | 6 |
Potanthus flavus | b28 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Aeromachus inachus | b24 | 5 | 0 | 5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 13 |
Thoressa varia | b31 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Pelopidas mathias | b29 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Pelopidas jansonis | b27 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
Parnara guttata | b23 | 8 | 6 | 2 | 10 | 4 | 3 | 2 | 5 | 1 | 1 | 0 | 42 |
Papilionidae | |||||||||||||
Parnassius citrinarius | b1 | 1 | 0 | 2 | 2 | 2 | 3 | 3 | 0 | 0 | 0 | 0 | 13 |
Papilio xuthus | b3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 |
Papilio protenor | b4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Papilio dehaanii | b2 | 0 | 2 | 0 | 0 | 2 | 3 | 0 | 3 | 1 | 0 | 0 | 11 |
Papilio maackii | b5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Pieridae | |||||||||||||
Eurema mandarina | b18 | 0 | 1 | 2 | 5 | 18 | 16 | 7 | 7 | 0 | 0 | 1 | 57 |
Gonepteryx maxima | b19 | 5 | 2 | 10 | 2 | 2 | 2 | 4 | 3 | 0 | 0 | 0 | 30 |
Colias erate | b20 | 0 | 0 | 4 | 3 | 0 | 0 | 1 | 3 | 0 | 0 | 1 | 12 |
Pieris (melete or japonica) spp. | b17 | 0 | 1 | 4 | 0 | 32 | 30 | 12 | 15 | 2 | 0 | 0 | 96 |
Lycaenidae | |||||||||||||
Artopoetes pryeri | b9 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3 |
Rapala arata | b11 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Fixsenia mera | b7 | 0 | 7 | 3 | 3 | 0 | 0 | 0 | 4 | 9 | 6 | 23 | 55 |
Lampides boeticus | b12 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Zizeeria maha | b8 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 4 |
Celastrina argiolus | b13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Everes argiades | b10 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 |
Plebejus argus | b6 | 2 | 2 | 27 | 17 | 6 | 7 | 11 | 3 | 3 | 4 | 4 | 86 |
Curetis acuta | b14 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Nymphalidae | |||||||||||||
Libythea celtis | b47 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
Brenthis daphne | b35 | 2 | 5 | 3 | 0 | 1 | 1 | 1 | 6 | 2 | 3 | 7 | 31 |
Argyronome laodice | b36 | 1 | 0 | 2 | 8 | 3 | 0 | 3 | 5 | 3 | 0 | 1 | 26 |
Argynnis ruslana | b34 | 4 | 2 | 2 | 0 | 11 | 7 | 3 | 3 | 2 | 0 | 0 | 34 |
Argynnis paphia | b33 | 2 | 0 | 1 | 7 | 13 | 14 | 9 | 13 | 1 | 0 | 0 | 60 |
Argynnis anadyomene | b37 | 2 | 1 | 0 | 2 | 6 | 7 | 2 | 4 | 0 | 0 | 0 | 24 |
Damora sagana | b44 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Fabriciana adippe | b32 | 1 | 9 | 14 | 8 | 14 | 7 | 6 | 12 | 3 | 1 | 1 | 76 |
Speyeria aglaja | b41 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 |
Argyreus hyperbius | b42 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
Limenitis camilla | b39 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 0 | 0 | 0 | 5 |
Limenitis glorifica | b38 | 1 | 1 | 1 | 1 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 11 |
Neptis sappho | b43 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Neptis pryeri | b45 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Polygonia c-aureum | b40 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 5 |
Inachis io | b46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Ypthima argus | b16 | 7 | 6 | 3 | 3 | 4 | 2 | 4 | 10 | 7 | 3 | 7 | 56 |
Minois dryas | b15 | 50 | 31 | 44 | 44 | 22 | 20 | 16 | 24 | 9 | 21 | 14 | 295 |
Melanitis phedima | b48 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Total | 107 | 85 | 168 | 142 | 165 | 153 | 106 | 145 | 47 | 39 | 69 | 1226 |
References
- MacArthur, R.H. Geographical Ecology: Patterns in the Distribution of Species; Harper & Row: New York, NY, USA, 1972. [Google Scholar]
- Pianka, E.R. Evolutionally Ecology, 4th ed.; Harper & Row: New York, NY, USA, 1988. [Google Scholar]
- Begon, M.; Harper, J.L.; Townsend, C.R. Ecology: Individuals, Populations and Communities, 4th ed.; Blackwell Publishing, Ltd.: Oxford, UK, 2006. [Google Scholar]
- Ehrlich, P.R. Population biology of checkerspot butterflies and the preservation of global biodiversity. Oikos 1992, 63, 6–12. [Google Scholar] [CrossRef]
- Primack, R.B. Essentials of Conservation Biology, 5th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2010. [Google Scholar]
- Primack, R.B. A Primer of Conservation Biology, 5th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2012. [Google Scholar]
- Boggs, C.L.; Murphy, D.D. Community composition in mountain ecosystems: Climatic determinants of montane butterfly distributions. Glob. Ecol. Biogeogr. Lett. 1997, 6, 39–48. [Google Scholar] [CrossRef]
- Kerr, J.T.; Southwood, T.R.E.; Cihlar, J. Remotely sensed habitat diversity predicts butterfly species richness and community similarity in Canada. Proc. Natl. Acad. Sci. USA 2001, 98, 11365–11370. [Google Scholar] [CrossRef] [PubMed]
- Stefanescu, C.; Herrando, S.; Páramo, F. Butterfly species richness in the north-west Mediterranean Basin: The role of natural and human-induced factors. J. Biogeogr. 2004, 31, 905–915. [Google Scholar] [CrossRef]
- Davis, J.D.; Debinski, D.M.; Danielson, B.J. Local and landscape effects on the butterfly community in fragmented Midwest USA prairie habitats. Landsc. Ecol. 2007, 22, 1341–1354. [Google Scholar] [CrossRef]
- Gonzalez-Megias, A.; Menendez, R.; Roy, D.; Brereton, T.O.M.; Thomas, C.D. Changes in the composition of British butterfly assemblages over two decades. Glob. Chang. Biol. 2008, 14, 1464–1474. [Google Scholar] [CrossRef]
- Forister, M.L.; McCall, A.C.; Sanders, N.J.; Fordyce, J.A.; Thorne, J.H.; O’Brien, J.; Waetjen, D.P.; Shapiro, A.M. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl. Acad. Sci. USA 2010, 107, 2088–2092. [Google Scholar] [CrossRef] [PubMed]
- Stefanescu, C.; Torre, I.; Jubany, J.; Páramo, F. Recent trends in butterfly populations from north-east Spain and Andorra in the light of habitat and climate change. J. Insect Conserv. 2011, 15, 83–93. [Google Scholar] [CrossRef]
- Stefanescu, C.; Carnicer, J.; Penuelas, J. Determinants of species richness in generalist and specialist Mediterranean butterflies: The negative synergistic forces of climate and habitat change. Ecography 2011, 34, 353–363. [Google Scholar] [CrossRef]
- Carneiro, E.; Mielke, O.H.H.; Casagrande, M.M.; Fiedler, K. Community structure of skipper butterflies (Lepidoptera, Hesperiidae) along elevational gradients in Brazilian Atlantic forest reflects vegetation type rather than altitude. PLoS ONE 2014, 9, e108207. [Google Scholar] [CrossRef]
- Chen, S.; Mao, L.; Zhang, J.; Zhou, K.; Gao, J. Environmental determinants of geographic butterfly richness pattern in eastern China. Biodivers. Conserv. 2014, 23, 1453–1467. [Google Scholar] [CrossRef]
- Fernández-Chacón, A.; Stefanescu, C.; Genovart, M.; Nichols, J.D.; Hines, J.E.; Páramo, F.; Turco, M.; Oro, D. Determinants of extinction-colonization dynamics in Mediterranean butterflies: The role of landscape, climate and local habitat features. J. Anim. Ecol. 2014, 83, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Zografou, K.; Kati, V.; Grill, A.; Wilson, R.J.; Tzirkalli, E.; Pamperis, L.N.; Halley, J.M. Signals of climate change in butterfly communities in a Mediterranean protected area. PLoS ONE 2014, 9, e87245. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.K.; Vijayan, L. Butterfly diversity along the elevation gradient of eastern Himalaya, India. Ecol. Res. 2015, 30, 909–919. [Google Scholar] [CrossRef]
- Nieto-Sánchez, S.; Gutiérrez, D.; Wilson, R.J. Long-term change and spatial variation in butterfly communities over an elevational gradient: Driven by climate, buffered by habitat. Divers. Distrib. 2015, 21, 950–961. [Google Scholar] [CrossRef]
- Vodă, R.; Dapporto, L.; Dincă, V.; Shreeve, T.G.; Khaldi, M.; Barech, G.; Rebbas, K.; Sammut, P.; Scalercio, S.; Hebert, P.D.N.; et al. Historical and contemporary factors generate unique butterfly communities on islands. Sci. Rep. 2016, 6, 28828. [Google Scholar] [CrossRef]
- Cleary, D.F.; Genner, M.J.; Koh, L.P.; Boyle, T.J.; Setyawati, T.; de Jong, R.; Menken, S.B. Butterfly species and traits associated with selectively logged forest in Borneo. Basic Appl. Ecol. 2009, 10, 237–245. [Google Scholar] [CrossRef]
- Matteson, K.C.; Langellotto, G.A. Determinates of inner city butterfly and bee species richness. Urban Ecosyst. 2010, 13, 333–347. [Google Scholar] [CrossRef]
- Kati, V.; Zografou, K.; Tzirkalli, E.; Chitos, T.; Willemse, L. Butterfly and grasshopper diversity patterns in humid Mediterranean grasslands: The roles of disturbance and environmental factors. J. Insect Conserv. 2012, 16, 807–818. [Google Scholar] [CrossRef]
- Checa, M.F.; Rodriguez, J.; Willmott, K.R.; Liger, B. Microclimate variability significantly affects the composition, abundance and phenology of butterfly communities in a highly threatened neotropical dry forest. Fla. Entomol. 2014, 97, 1–13. [Google Scholar] [CrossRef]
- Collinge, S.K.; Prudic, K.L.; Oliver, J.C. Effects of local habitat characteristics and landscape context on grassland butterfly diversity. Conserv. Biol. 2003, 17, 178–187. [Google Scholar] [CrossRef]
- Lien, V.; Yuan, D. The differences of butterfly (Lepidoptera, Papilionoidea) communities in habitats with various degrees of disturbance and altitudes in tropical forests of Vietnam. Biodivers. Conserv. 2003, 12, 1099–1111. [Google Scholar] [CrossRef]
- Leps, J.; Spitzer, K. Ecological determinants of butterfly communities (Lepidoptera, Papilionoidea) in the Tam Dao mountains, Vietnam. Acta Entomol. Bohemoslov. 1990, 87, 182–194. [Google Scholar]
- Spitzer, K.; Jaros, J.; Havelka, J.; Leps, J. Effect of small-scale disturbance on butterfly communities of an Indochinese montane rainforest. Biol. Conserv. 1997, 80, 9–15. [Google Scholar] [CrossRef]
- D’Aniello, B.; Stanislao, I.; Bonelli, S.; Balletto, E. Haying and grazing effects on the butterfly communities of two Mediterranean-area grasslands. Biodivers. Conserv. 2011, 20, 1731–1741. [Google Scholar] [CrossRef]
- Kwon, T.S.; Kim, S.S.; Lee, C.M.; Jung, S.J. Changes of butterfly communities after forest fire. J. Asia-Pac. Entomol. 2013, 16, 361–367. [Google Scholar] [CrossRef]
- Clark, P.J.; Reed, J.M.; Chew, F.S. Effects of urbanization on butterfly species richness, guild structure, and rarity. Urban Ecosyst. 2007, 10, 321–337. [Google Scholar] [CrossRef]
- New, T.R. Butterfly Conservation, 2nd ed.; Oxford University Press: Melbourne, Australia, 1997. [Google Scholar]
- Kubo, M.; Kobayashi, T.; Kitahara, M.; Hayashi, A. Seasonal fluctuations in butterflies and nectar resources in a semi-natural grassland near Mt. Fuji, central Japan. Biodivers. Conserv. 2009, 18, 229–246. [Google Scholar] [CrossRef]
- Kubo, M.; Kobayashi, T.; Kitahara, M.; Hayashi, A. Effects of land management on species composition of butterflies and nectar resources in a semi-natural grassland near Mt. Fuji, central Japan. Veg. Sci. 2011, 28, 49–62, (In Japanese with English Summary). [Google Scholar]
- Kubo, M.; Matutani, J.; Hayashi, A. Factors of the failure of planting in Uenohara-area at the foot of Mt. Fuji. Bull. Yamanashi For. Res. Inst. 2005, 24, 61–67, (In Japanese with English Summary). [Google Scholar]
- Ohwaki, A.; Hayami, S.; Kitahara, M.; Yasuda, T. The role of linear mown firebreaks in conserving butterfly diversity: Effects of adjacent vegetation and management. Entomol. Sci. 2018, 21, 112–123. [Google Scholar] [CrossRef]
- Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 1977, 12, 115–134. [Google Scholar] [CrossRef]
- Batáry, P.; Örvössy, N.; Korösi, Á.; Nagy, M.V.; Peregovits, L. Microhabitat preferences of Maculinea teleius (Lepidoptera: Lycaenidae) in a mosaic landscape. Eur. J. Entomol. 2007, 104, 731–736. [Google Scholar] [CrossRef]
- Berg, Å.; Ahrné, K.; Öckinger, E.; Svensson, R.; Söderström, B. Butterfly distribution and abundance is affected by variation in the Swedish forest-farmland landscape. Biol. Conserv. 2011, 144, 2819–2831. [Google Scholar] [CrossRef]
- Kadlec, T.; Tropek, R.; Konvicka, M. Timed surveys and transect walks as comparable methods for monitoring butterflies in small plots. J. Insect Conserv. 2012, 16, 275–280. [Google Scholar] [CrossRef]
- Barkmann, F.; Huemer, P.; Tappeiner, U.; Tasser, E.; Rüdisser, J. Standardized butterfly surveys: Comparing transect counts and area-time counts in insect monitoring. Biodiv. Conserv. 2023, 32, 987–1004. [Google Scholar] [CrossRef]
- Hanski, I.; Kuussaari, M.; Nieminen, M. Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 1994, 75, 747–762. [Google Scholar] [CrossRef]
- Lewis, O.; Thomas, C.; Hill, J.; Brookes, M.; Crane, T.P.; Graneau, Y.; Mallet, J.; Rose, O. Three ways of assessing metapopulation structure in the butterfly Plebejus argus. Ecol. Entomol. 1997, 22, 283–293. [Google Scholar] [CrossRef]
- Pollard, E.; Yates, T.J. Monitoring Butterflies for Ecology and Conservation: The British Butterfly Monitoring Scheme; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Ishii, M. Transect counts of butterflies. In Decline and Conservation of Butterflies in Japan II; Yata, O., Ueda, K., Eds.; The Lepidopterological Society of Japan & the Nature Conservation Society of Japan: Osaka, Japan, 1993; pp. 91–101, (In Japanese with English Summary). [Google Scholar]
- De’ath, G. Multivariate regression trees: A new technique for modeling species–environment relationships. Ecology 2002, 83, 1105–1117. [Google Scholar] [CrossRef]
- Cao, T.; Wang, X.; Zhang, H. Energy bagging tree. Stat. Its Interface 2016, 9, 171–181. [Google Scholar] [CrossRef]
- Shiyomi, M.; Chen, J. How do we analyze auto-correlated data? Jpn. J. Grassl. Sci. 2017, 63, 23–27. (In Japanese) [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; (Version 2.12.0); R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- De’ath, G. MVPART: Multivariate Partitioning R Package; Version 1.2–6; 2006. Available online: http://cran.r-project.org/ (accessed on 8 October 2022).
- Unno, K.; Aoyama, J. The Butterflies of Japan; Shougakukan: Tokyo, Japan, 1981. (In Japanese) [Google Scholar]
- Fukuda, H.; Hama, E.; Kuzuya, T.; Takahashi, A.; Takahashi, M.; Tanaka, B.; Tanaka, H.; Wakabayashi, M.; Watanabe, Y. The Life Histories of Butterflies in Japan: Volume 1, Papilionidae and Pieridae; Hoikusha: Osaka, Japan, 1982; (In Japanese with English Summary). [Google Scholar]
- Fukuda, H.; Hama, E.; Kuzuya, T.; Takahashi, A.; Takahashi, M.; Tanaka, B.; Tanaka, H.; Wakabayashi, M.; Watanabe, Y. The Life Histories of Butterflies in Japan: Volume 2, Nymphalidae; Hoikusha: Osaka, Japan, 1983; (In Japanese with English Summary). [Google Scholar]
- Fukuda, H.; Hama, E.; Kuzuya, T.; Takahashi, A.; Takahashi, M.; Tanaka, B.; Tanaka, H.; Wakabayashi, M.; Watanabe, Y. The Life Histories of Butterflies in Japan: Volume 3, Lycaenidae; Hoikusha: Osaka, Japan, 1984; (In Japanese with English Summary). [Google Scholar]
- Fukuda, H.; Hama, E.; Kuzuya, T.; Takahashi, A.; Takahashi, M.; Tanaka, B.; Tanaka, H.; Wakabayashi, M.; Watanabe, Y. The Life Histories of Butterflies in Japan: Volume 4, Satyridae and Hesperiidae; Hoikusha: Osaka, Japan, 1984; (In Japanese with English Summary). [Google Scholar]
- Endo, S.; Nihira, I. Larval Food of Japanese Butterflies; Group Tamamushi: Tokyo, Japan, 1990. (In Japanese) [Google Scholar]
- Nihira, I. Larval Food Plants of Japanese Butterflies; Self-published: Tokyo, Japan, 2004. (In Japanese) [Google Scholar]
- Saito, M.U.; Jinbo, U.; Yago, M.; Kurashima, O.; Ito, M. Larval host records of butterflies in Japan. Ecol. Res. 2016, 31, 491. [Google Scholar] [CrossRef]
- Ministry of the Environment of Japan. Red List of Japanese Insects in 2019 Version. Available online: https://ikilog.biodic.go.jp/Rdb/booklist (accessed on 8 October 2020).
- Stefanescu, C.; Penuelas, J.; Filella, I. Rapid changes in butterfly communities following the abandonment of grasslands: A case study. Insect Conserv. Divers. 2009, 2, 261–269. [Google Scholar] [CrossRef]
- Vu, L.V.; Bonebrake, T.C.; Vu, M.Q.; Nguyen, N.T. Butterfly diversity and habitat variation in a disturbed forest in northern Vietnam. Pan-Pac. Entomol. 2015, 91, 29–39. [Google Scholar] [CrossRef]
- Darst, A.L.; Mitchell, T.S.; Verhoeven, M.R.; Evans, E.; Tonsfeldt, L.; Kjaer, S.; Snell-Rood, E.C. Diversity of bumble bees and butterflies in Minnesota roadsides depends on floral diversity and abundance but not floral native status. Insect Conserv. Divers. 2024. [Google Scholar] [CrossRef]
- Pocewicz, A.; Morgan, P.; Eigenbrode, S.D. Local and landscape effects on butterfly density in northern Idaho grasslands and forests. J. Insect Conserv. 2009, 13, 593–601. [Google Scholar] [CrossRef]
- Kitahara, M.; Yumoto, M.; Kobayashi, T. Relationship of butterfly diversity with nectar plant species richness in and around the Aokigahara primary woodland of Mount Fuji, central Japan. Biodiv. Conserv. 2008, 17, 2713–2734. [Google Scholar] [CrossRef]
- Kitahara, M.; Fujii, K. Biodiversity and community structure of temperate butterfly species within a gradient of human disturbance: An analysis based on the concept of generalist vs. specialist strategies. Res. Popul. Ecol. 1994, 36, 187–199. [Google Scholar] [CrossRef]
- Kitahara, M.; Fujii, K. An island biogeographical approach to the analysis of butterfly community patterns in newly designed parks. Res. Popul. Ecol. 1997, 39, 23–35. [Google Scholar] [CrossRef]
- Kitahara, M.; Sei, K.; Fujii, K. Patterns in the structure of grassland butterfly communities along a gradient of human disturbance: Further analysis based on the generalist/specialist concept. Popul. Ecol. 2000, 42, 135–144. [Google Scholar] [CrossRef]
- Schmitt, T.; Rákosy, L. Changes of traditional agrarian landscapes and their conservation implications: A case study of butterflies in Romania. Divers. Distrib. 2007, 13, 855–862. [Google Scholar] [CrossRef]
- Schmitt, T.; Ulrich, W.; Büschel, H.; Bretzel, J.; Gebler, J.; Mwadime, L.; Habel, J.C. The relevance of cloud forest fragments and their transition zones for butterfly conservation in Taita Hills, Kenya. Biodiv. Conserv. 2020, 29, 3191–3207. [Google Scholar] [CrossRef]
- Halbritter, D.A.; Daniels, J.C.; Whitaker, D.C.; Huang, L. Reducing mowing frequency increases floral resource and butterfly (Lepidoptera: Hesperioidea and Papilionoidea) abundance in managed roadside margins. Fla. Entomol. 2015, 98, 1081–1092. [Google Scholar] [CrossRef]
- Lanta, V.; Mudrák, O.; Liancourt, P.; Bartoš, M.; Chlumská, Z.; Dvorský, M.; Pusztaiová, Z.; Münzbergová, Z.; Sebek, P.; Čížek, L.; et al. Active management promotes plant diversity in lowland forests: A landscape-scale experiment with two types of clearings. For. Ecol. Manag. 2019, 448, 94–103. [Google Scholar] [CrossRef]
- Clausen, H.D.; Holbeck, H.B.; Reddersen, J. Factors influencing abundance of butterflies and burnet moths in the uncultivated habitats of an organic farm in Denmark. Biol. Conserv. 2001, 98, 167–178. [Google Scholar] [CrossRef]
- Pöyry, J.; Lindgren, S.; Salminen, J.; Kuussaari, M. Restoration of butterfly and moth communities in semi-natural grasslands by cattle grazing. Ecol. Appl. 2004, 14, 1656–1670. [Google Scholar] [CrossRef]
- Kuussaari, M.; Heliölä, J.; Luoto, M.; Pöyry, J. Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes. Agric. Ecosyst. Environ. 2007, 122, 366–376. [Google Scholar] [CrossRef]
- Shreeve, T.G.; Dennis, R.L.H.; Roy, D.B.; Moss, D. An ecological classification of British butterflies: Ecological attributes and biotope occupancy. J. Insect Conserv. 2001, 5, 145–161. [Google Scholar] [CrossRef]
- Warren, M.S.; Hill, J.K.; Thomas, J.A.; Asher, J.; Fox, R.; Huntley, B.; Roy, D.B.; Telfer, M.G.; Jeffcoate, S.; Harding, P.; et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 2001, 414, 65–69. [Google Scholar] [CrossRef]
- Wilson, R.J.; Gutierrez, D.; Gutierrez, J.; Monserrat, V.J. An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob. Chang. Biol. 2007, 13, 1873–1887. [Google Scholar] [CrossRef]
- Inoue, T. Chronosequential change in a butterfly community after clear-cutting of deciduous forests in a cool temperate region of central Japan. Entomol. Sci. 2003, 6, 151–163. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kitahara, M.; Ohkubo, T.; Aizawa, M. Relationships between the age of northern Kantou plain (central Japan) coppice woods used for production of Japanese forest mushroom logs and butterfly assemblage structure. Biodiv. Conserv. 2010, 19, 2147–2166. [Google Scholar] [CrossRef]
- Ekroos, J.; Heliölä, J.; Kuussaari, M. Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes. J. Appl. Ecol. 2010, 47, 459–467. [Google Scholar] [CrossRef]
- Slancarova, J.; Benes, J.; Kristynek, M.; Kepka, P.; Konvicka, M. Does the surrounding landscape heterogeneity affect the butterflies of insular grassland reserves? A contrast between composition and configuration. J. Insect Conserv. 2014, 18, 1–12. [Google Scholar] [CrossRef]
Environmental Factor (Explanatory Variable) | |||||
---|---|---|---|---|---|
Transect (Type) | Habitat Type (Habitat) | Neighboring Plant Community (nei.com) | Management Status (Manag) | Trampling Pressure (Tramp) | Distance from the Central Part of the Grassland (Dist) |
1 (D) | 1 | 1 | 2 | 0 | 0 |
2 (D) | 1 | 1 | 2 | 0 | 0 |
3 (C) | 3 | 2 | 1 | 1 | 1 |
4 (C) | 3 | 2 | 1 | 1 | 1 |
5 (A) | 5 | 3 | 1 | 1 | 3 |
6 (A) | 5 | 3 | 1 | 1 | 3 |
7 (B) | 4 | 3 | 1 | 1 | 2 |
8 (B) | 4 | 3 | 1 | 1 | 2 |
9 (E) | 2 | 1 | 3 | 0 | 0 |
10 (E) | 2 | 1 | 3 | 0 | 0 |
11 (E) | 2 | 1 | 3 | 0 | 0 |
Component | ||||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | |
Standard deviation | 16.830 | 15.501 | 8.158 | 4.805 | 4.388 | 3.822 |
Proportion of variance | 0.426 | 0.361 | 0.100 | 0.035 | 0.029 | 0.022 |
Cumulative proportion | 0.426 | 0.788 | 0.888 | 0.923 | 0.952 | 0.974 |
Species | Type of Larval Host Plants (1) | No. of Species of Adult Nectar Plants (2) | Red Listed Species (3) | ||
---|---|---|---|---|---|
Herbaceous Plants | Woody Plants | Herbaceous Plants | Woody Plants | ||
G1 | |||||
Pieris spp. | ○ | 19 (79.2%) | 5 (20.8%) | ||
Eurema mandarina | ○ | 21 (77.8%) | 6 (22.2%) | ||
Argynnis paphia | ○ | 26 (72.2%) | 10 (27.8%) | ||
Argynnis ruslana | ○ | 18 (78.3%) | 5 (21.7%) | ||
Argynnis anadyomene | ○ | 13 (54.2%) | 11 (45.8%) | ||
G2 | |||||
Minois dryas | ○ | 25 (89.3%) | 3 (10.7%) | ||
Leptalina unicolor | ○ | 22 (95.7%) | 1 (4.3%) | ○ | |
Fabriciana adippe | ○ | 24 (77.4%) | 7 (22.6%) | ||
Plebejus argus | ○ | 16 (100.0%) | 0 (0%) | ○ | |
Gonepteryx maxima | ○ | 11 (91.7%) | 1 (8.3%) | ○ | |
Ochlodes venatus | ○ | 11 (100.0%) | 0 (0%) | ||
Parnara guttata | ○ | 79 (91.9%) | 7 (8.1%) | ||
G3 | |||||
Fixsenia mera | ○ | 11 (84.6%) | 2 (15.4%) | ||
Brenthis daphne | ○ | 15 (83.3%) | 3 (16.7%) | ○ | |
Ypthima argus | ○ | 39 (79.6%) | 10 (20.4%) | ||
Inachis io | ○ | 36 (94.7%) | 2 (5.3%) |
Species Groups Compared | Estimate | Std. Error | z Value | Pr (>|z|) | |
---|---|---|---|---|---|
G2 − G1 == 0 | −1.3431 | 0.3472 | −3.868 | <0.001 | *** |
G3 − G1 == 0 | −0.8343 | 0.3687 | −2.263 | 0.0609 | . |
G3 − G2 == 0 | 0.5088 | 0.3952 | 1.287 | 0.4014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitahara, M.; Yasuda, T. Determinants of Butterfly Community Structure and Composition at the Local Habitat Level: Importance of Neighboring Vegetation and Management Status: A Case Study. Diversity 2024, 16, 310. https://doi.org/10.3390/d16060310
Kitahara M, Yasuda T. Determinants of Butterfly Community Structure and Composition at the Local Habitat Level: Importance of Neighboring Vegetation and Management Status: A Case Study. Diversity. 2024; 16(6):310. https://doi.org/10.3390/d16060310
Chicago/Turabian StyleKitahara, Masahiko, and Taisuke Yasuda. 2024. "Determinants of Butterfly Community Structure and Composition at the Local Habitat Level: Importance of Neighboring Vegetation and Management Status: A Case Study" Diversity 16, no. 6: 310. https://doi.org/10.3390/d16060310
APA StyleKitahara, M., & Yasuda, T. (2024). Determinants of Butterfly Community Structure and Composition at the Local Habitat Level: Importance of Neighboring Vegetation and Management Status: A Case Study. Diversity, 16(6), 310. https://doi.org/10.3390/d16060310