Land Use Impact on Water Quality and Phytoplankton Community Structure in Danjiangkou Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use Data
2.3. Phytoplankton Sample Collection, Identification, and Data Processing
2.4. Water Quality Analysis
2.5. Data Analysis
3. Results
3.1. Land Use Pattern around Danjiangkou Reservoir
3.2. Impact of Land Use on Water Quality around Danjiangkou Reservoir
3.3. Phytoplankton Community Structure
3.4. Relationship between Phytoplankton and Environmental Factors under Different Intensities
4. Discussion
4.1. Relationship between Land Use and Water Quality
4.2. Differences in Phytoplankton Community Structure under Different Human Activity Intensities
4.3. Correlation between Phytoplankton and Water Environment
5. Conclusions
- (1)
- At a 500 m radius circular buffer zone, land use has the highest explanatory power for water quality. RDA analysis revealed that conductivity (Cond), turbidity (Turb), and the permanganate index (CODMn) were the predominant environmental factors influenced by land use. Spearman’s correlation analysis showed that the lower the intensity of human activities, the lower the risk of water body pollution and the higher the water environmental quality.
- (2)
- Escalation of human activities contributes to an elevated content of TN and TP in the water body, indirectly influencing the permanganate index. This permanganate index is the principal environmental driver altering the algal community distributions in the Danjiangkou Reservoir area, further impacting the growth of phytoplankton.
- (3)
- Increased human activity intensity led to higher nutrient levels in water bodies, increasing the potential risk of eutrophication. This is conducive to massive growth and reproduction of algae such as Scenedesmus, Pseudanabaena and Microcystis, leading to increased density and dominance, raising the risk of algal blooms in water bodies.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Genera Detected in the Phytoplankton of Danjiangkou Reservoir | |||
Cyclotella | Chlamydomonas | Dictyosphaerium | Peridinium |
Asterionella | Pteromonas | Hydrodictyon | Gymnodinium |
Fragilaria | Chlorogonium | Westella | Ceratium |
Staurosira | Tetrablepharis | Staurastrum | Euglena |
Synedra | Spermatozopsis | Cosmarium | Phacus |
Navicula | Treubaria | Gonatozygon | Strombomonas |
Cymbella | Microspora | Dimorphococcus | Trachelomonas |
Achnanthes | Planctonema | Tetrastrum | Dinobryon |
Gomphonema | Spirogyra | Oscillatoria | Kephyrion |
Nitzschia | Stigeoclonium | Planktothrix | Synura |
Surirella | Nephrocytium | Phormidium | Gomphosphaeria |
Diatoma | Quadrigula | Spirulina | Golenkinia |
Cocconeis | Chodatella | Cylindrospermopsis | Melosira |
Rhizosolenia | Ankistrodesmus | Anabaenopsis | Coelosphaerium |
Attheya | Tetraëdron | Cuspidothrix | Schroederia |
Amphora | Kirchneriella | Aphanizomenon | Ulothrix |
Eunotia | Selenastrum | Dactylococcopsis | Actinastrum |
Diploneis | Mougeotia | Raphidiopsis | Cryptomonas |
Hantzschia | Scenedesmus | Pseudanabaena | Oocystis |
Meridion | Chlorella | Merismopedia | Eudorina |
Cymatopleura | Crucigenia | Anabaena | Lyngbya |
Ceratoneis | Coelastrum | Chroococcus | Limnothrix |
Gyrosigma | Closterium | Microcystis | Pandorina |
Amphiprora | Pediastrum |
References
- Schmidt, T.S.; Van Metre, P.C.; Carlisle, D.M. Linking the Agricultural Landscape of the Midwest to Stream Health with Structural Equation Modeling. Environ. Sci. Technol. 2018, 53, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Dunne, J.P. Fall and rise of the phytoplankton. Nat. Clim. Chang. 2022, 12, 708–709. [Google Scholar] [CrossRef]
- Li, S.; Shi, W.; You, M. Antibiotics in water and sediments of Danjiangkou Reservoir, China: Spatiotemporal distribution and indicator screening. Environ. Pollut. 2019, 246, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Li, X.G.; Duan, X.F.; Fu, J.B. GIS-based characterization of land use/cover dynamics in Danjiangkou Reservoir. J. North China Univ. Water Resour. Hydropower 2022, 43, 90–98. [Google Scholar] [CrossRef]
- Vrebos, D.; Beauchard, O.; Meire, P. The impact of land use and spatial mediated processes on the water quality in a river system. Sci. Total Environ. 2017, 601–602, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Mu, M.; Gao, L.; Zhang, H. Effects of land use on water quality at different spatial scales in the middle reaches of Huaihe River. J. Freshwater Ecol. 2023, 38, 2176373. [Google Scholar] [CrossRef]
- Tran, C.P.; Bode, R.W.; Smith, A.J. Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecol. Indic. 2010, 10, 727–733. [Google Scholar] [CrossRef]
- Obubu, J.P.; Mengistou, S.; Odong, R.; Fetahi, T.; Alamirew, T. Determination of the Connectedness of Land Use, Land Cover Change to Water Quality Status of a Shallow Lake: A Case of Lake Kyoga Basin, Uganda. Sustainability 2022, 14, 372. [Google Scholar] [CrossRef]
- Shehab, Z.N.; Jamil, N.R.; Aris, A.Z. Spatial variation impact of landscape patterns and land use on water quality across an urbanized watershed in Bentong, Malaysia. Ecol. Indic. 2020, 122, 107254. [Google Scholar] [CrossRef]
- Gule, T.T.; Lemma, B.; Hailu, B.T. Implications of land use/land cover dynamics on urban water quality: Case of Addis Ababa city, Ethiopia. Heliyon 2023, 9, e15665. [Google Scholar] [CrossRef]
- Chen, M.; Jin, X.; Liu, Y. Human activities induce potential aquatic threats of micropollutants in Danjiangkou Reservoir, the largest artificial freshwater lake in Asia. Sci. Total Environ. 2022, 850, 157843. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhang, L.; Li, Y. The changing characteristics of phytoplankton community and biomass in subtropical shallow lakes: Coupling effects of land use patterns and lake morphology. Water Res. 2021, 200, 117235. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Camejo, J.; Robles, A.; Seco, A. On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation. J. Environ. Manag. 2020, 276, 111343. [Google Scholar] [CrossRef] [PubMed]
- Varol, M. Phytoplankton functional groups in a monomictic reservoir: Seasonal succession, ecological preferences, and relationships with environmental variables. Environ. Sci. Pollut. Res. 2019, 26, 20439–20453. [Google Scholar] [CrossRef] [PubMed]
- Poste, A.; Hecky, R.; Guildford, S. Phosphorus enrichment and carbon depletion contribute to high Microcystis biomass and microcystin concentrations in Ugandan lakes. Limnol. Oceanogr. 2013, 58, 1075–1088. [Google Scholar] [CrossRef]
- Masuda, T.; Prášil, O.; Villafañe, V.E.; Valiñas, M.S.; Inomura, K.; Helbling, E.W. Impact of Increased Nutrients and Lowered pH on Photosynthesis and Growth of Three Marine Phytoplankton Communities from the Coastal South West Atlantic (Patagonia, Argentina). Front. Mar. Sci. 2021, 8, 609962. [Google Scholar] [CrossRef]
- Szymańska-Walkiewicz, M.; Glińska-Lewczuk, K.; Burandt, P.; Obolewski, K. Phytoplankton Sensitivity to Heavy Metals in Baltic Coastal Lakes. Int. J. Environ. Res. Public Health 2022, 19, 4131. [Google Scholar] [CrossRef] [PubMed]
- Everaert, G.; De Laender, F.; Goethals, P.L. Relative contribution of persistent organic pollutants to marine phytoplankton biomass dynamics in the North Sea and the Kattegat. Chemosphere 2015, 134, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Gobler, C.J.; Burkholder, J.M.; Davis, T.W. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 2016, 54, 87–97. [Google Scholar] [CrossRef]
- Silkin, V.; Abakumov, A.; Esin, N.; Pautova, L.; Lifanchuk, A.; Fedorov, A. Phytoplankton Dynamics and Biogeochemistry: Model Studies. J. Mar. Sci. Eng. 2024, 12, 178. [Google Scholar] [CrossRef]
- Pan, Y.; Guo, S.; Li, Y. Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir. Water 2018, 10, 256. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, B.; Zhang, J. The Detection of Flood Characteristics Alteration Induced by the Danjiangkou Reservoir at Han River, China. Water 2021, 13, 496. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, X.; Tang, Q. The intensity of human activities on the surface of land: Concepts, methods, and applications. J. Geogr. 2015, 70, 1068–1079. (In Chinese) [Google Scholar] [CrossRef]
- Editorial Committee of Chinese Spore Flora, Chinese Academy of Sciences. Flora of Freshwater Algae in China: 1988–2016; Science Press: Beijing, China, 2018. [Google Scholar]
- Hydrological Bureau of the Ministry of Water Resources, Yangtze River Basin Water Environment Monitoring Center. Atlas of Common Algae in Chinese Inland Waters; Yangtze River Press: Wuhan, China, 2012. [Google Scholar]
- Zhu, H.; Chen, J. Diatoms of Tibet, China; Science Press: Beijing, China, 2000. [Google Scholar]
- Lee, R.E. Phycology, 4th ed.; University Press: Cambridge, UK, 2008. [Google Scholar]
- Zhang, Z.; Huang, X. Methods of Freshwater Plankton Research; Science Press: Beijing, China, 1991. [Google Scholar]
- State Environmental Protection Administration. Methods of Analysis for Water and Wastewater Monitoring, 4th ed.; China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Pesce, S.F.; Wunderlin, D.A. Use of water quality indices to verify the impact of Córdoba City (Argentina) on Suquía River. Water Res. 2000, 34, 2915–2926. [Google Scholar] [CrossRef]
- Lopes, O.F.; de Jesus, R.M.; de Sousa, L.F.; Rocha, F.A.; da Silva, D.M.L.; Amorim, A.F.; da Silva, V.H.C.; Navoni, J.A. Comparison between water quality indices in watersheds of the Southern Bahia (Brazil) with different land use. Environ. Sci. Pollut. Res. 2021, 28, 12944–12959. [Google Scholar] [CrossRef]
- Savic, R.; Stajic, M.; Blagojević, B.; Bezdan, A.; Vranesevic, M.; Nikolić Jokanović, V.; Baumgertel, A.; Bubalo Kovačić, M.; Horvatinec, J.; Ondrasek, G. Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube. Agriculture 2022, 12, 935. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Sun, S.; Cai, C.; Zhang, J. Discussing on “source-sink” landscape theory and phytoremediation for non-point source pollution control in China. Environ. Sci. Pollut. Res. 2020, 27, 44797–44806. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Wei, M.; Yao, L.; Li, M. Relationship between non-point source pollution and fluorescence fingerprint of riverine dissolved organic matter is season dependent. Sci. Total Environ. 2022, 823, 153617. [Google Scholar] [CrossRef]
- Hur, J.; Cho, J. Prediction of BOD, COD, and Total Nitrogen Concentrations in a Typical Urban River Using a Fluorescence Excitation-Emission Matrix with PARAFAC and UV Absorption Indices. Sensors 2012, 12, 972–986. [Google Scholar] [CrossRef]
- Sazawa, K.; Tachi, M.; Wakimoto, T. The Evaluation for Alterations of DOM Components from Upstream to Downstream Flow of Rivers in Toyama (Japan) Using Three-Dimensional Excitation-Emission Matrix Fluorescence Spectroscopy. Int. J. Environ. Res. Public Health 2011, 8, 1655–1670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jiao, Y.; Xu, Q. A review of land use change and its impact on water quality in Dianchi Basin. Yangtze River 2023, 54, 65–73. (In Chinese) [Google Scholar] [CrossRef]
- Starr, S.; Heintzman, L.; Mulligan, K. Using Remotely Sensed Imagery to Document How Land Use Drives Turbidity of Playa Waters in Texas. Remote Sens. 2016, 8, 192. [Google Scholar] [CrossRef]
- Soares, J.; Kriiger Loterio, R.; Rosa, R.M. Scenedesmus sp. cultivation using commercial-grade ammonium sources. Ann. Microbiol. 2018, 68, 35–45. [Google Scholar] [CrossRef]
- Han, B.-P.; Lin, X.; Lei, L. Survivals of D. galeata in sub-tropical reservoirs: Harmful effects of toxic cyanobacteria in food source. Ecotoxicology 2012, 21, 1692–1705. [Google Scholar] [CrossRef] [PubMed]
- Le Ai Nguyen, V.; Tanabe, Y.; Matsuura, H. Morphological, biochemical and phylogenetic assessments of water-bloom-forming tropical morphospecies of Microcystis (Chroococcales, Cyanobacteria). Phycol. Res. 2012, 60, 208–222. [Google Scholar] [CrossRef]
- Park, J.W.; Kim, S.Y.; Noh, J.H. A shift from chemical oxygen demand to total organic carbon for stringent industrial wastewater regulations: Utilization of organic matter characteristics. J. Environ. Manag. 2022, 305, 114412. [Google Scholar] [CrossRef] [PubMed]
- Ladwig, N.; Hesse, K.-J.; van der Wulp, S.A. Pressure on oxygen levels of Jakarta Bay. Mar. Pollut. Bull. 2016, 110, 665–764. [Google Scholar] [CrossRef] [PubMed]
- Nengzi, L.; Li, H.; Ke, D. Influence of Temperature on the Removal Efficiency of Organic Matter and Ammonia from Micro-Polluted Source Water. Water 2023, 15, 2695. [Google Scholar] [CrossRef]
- Chaffee, M.; Mittelstet, A.R.; Comfort, S.; Messer, T.; Shrestha, N.; Eskridge, K.; McCoy, J. Monitoring temporal chlorophyll-a using Sentinel-2 imagery in urban retention ponds receiving a biological-chemical treatment. Ecol. Eng. 2023, 197, 107123. [Google Scholar] [CrossRef]
Farmland | Forest | Grassland | Water | Construction Land | |
---|---|---|---|---|---|
500 m circular buffer | 27.11% | 25.24% | 0.11% | 36.12% | 11.42% |
1000 m circular buffer | 28.44% | 29.93% | 0.08% | 32.13% | 9.42% |
1500 m circular buffer | 27.93% | 33.58% | 0.10% | 29.99% | 8.39% |
2000 m circular buffer | 28.73% | 34.64% | 0.17% | 28.49% | 7.97% |
2500 m circular buffer | 29.19% | 35.51% | 0.22% | 27.34% | 7.74% |
Genera | Dominance | |
---|---|---|
High HAIL Area | Cyclotella | 0.0251 |
Scenedesmus | 0.2495 | |
Pseudanabaena | 0.0454 | |
Microcystis | 0.0227 | |
Medium HAIL Area | Microcystis | 0.2046 |
Low HAIL Area | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Gao, J.; Zhao, H.; Deng, S.; Lin, M.; Wang, N.; Liu, M.; Hu, S.; Luo, L. Land Use Impact on Water Quality and Phytoplankton Community Structure in Danjiangkou Reservoir. Diversity 2024, 16, 275. https://doi.org/10.3390/d16050275
Zhu Y, Gao J, Zhao H, Deng S, Lin M, Wang N, Liu M, Hu S, Luo L. Land Use Impact on Water Quality and Phytoplankton Community Structure in Danjiangkou Reservoir. Diversity. 2024; 16(5):275. https://doi.org/10.3390/d16050275
Chicago/Turabian StyleZhu, Yanrong, Jing Gao, Hongbing Zhao, Shijiang Deng, Mengran Lin, Nenghan Wang, Minxuan Liu, Sheng Hu, and Laibo Luo. 2024. "Land Use Impact on Water Quality and Phytoplankton Community Structure in Danjiangkou Reservoir" Diversity 16, no. 5: 275. https://doi.org/10.3390/d16050275
APA StyleZhu, Y., Gao, J., Zhao, H., Deng, S., Lin, M., Wang, N., Liu, M., Hu, S., & Luo, L. (2024). Land Use Impact on Water Quality and Phytoplankton Community Structure in Danjiangkou Reservoir. Diversity, 16(5), 275. https://doi.org/10.3390/d16050275