Application of Univariate Diversity Metrics to the Study of the Population Ecology of the Lizard Lacerta bilineata in an Ecotonal Habitat
Abstract
:1. Introduction
- (1)
- What was the composition of the lizard population in terms of male/female and juveniles? This is of particular interest, given that the study population is present in an anthropogenically dominated environment.
- (2)
- Do hedgerows represent permanent habitats or movement pathways to prime habitats? This is a frequently asked question in ecological studies concerning hedgerow systems [7] and thus is a question that is important for better understanding the population viability of species inhabiting this type of habitat. We answer this question using data on the annual presence of individuals over the 4-year study period. If the hedgerow is the permanent habitat for most individuals, we should expect to see most individuals in the population present for more than 1 year.
- (3)
- Was the population stable over the 4-year time period in terms of numbers and frequency of presence? This question is of interest, given that a previous long-term study (14 years) over the wider area indicated that the populations fluctuated widely.
- (4)
- What is the annual activity period and is there a midsummer gap, as found in other lacertids? This question originates from a study by [29], where several species of lacertid, including L. bilineata, showed what could be described as a midsummer gap.
2. Methods
2.1. Study Area
2.2. Lizard Sampling
2.3. Statistical Analysis
3. Results
3.1. General Counts
3.2. Temporal Presence
3.3. Lizard Sightings before and after the Midsummer Gap
3.4. Annual Sighting Frequencies and Temporal Presence
3.5. Diversity Analysis
3.6. Autotomy
4. Discussion
4.1. Univariate Metric Analyses
4.2. The Midsummer Gap
4.3. Autotomy
4.4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simberloff, D.; Cox, J. Consequences and costs of conservation corridors. Conserv. Biol. 1987, 1, 63–71. [Google Scholar] [CrossRef]
- Zug, G.R.; Vitt, L.; Caldwell, J.P. Herpetology: An Introductory Biology of Amphibians and Reptiles; Google Books: London, UK, 2001. [Google Scholar]
- Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. Glob. Ecol. Biogeorg. 2013, 40, 1649–1663. [Google Scholar] [CrossRef]
- Doherty, T.S.; Balouch, S.; Bell, K.; Burns, T.J.; Feldman, A.; Fist, C.; Garvey, T.F.; Jessop, T.S.; Meiri, S.; Driscoll, D.A. Reptile responses to anthropogenic habitat modification: A global meta-analysis. Glob. Ecol. Biogeorg. 2020, 29, 1265–1279. [Google Scholar] [CrossRef]
- Guiller, G.J.; Legentilhomme, A.; Boissinot, G.; Blouin-Demers, C.; Barbraud, O.; Lourdais, O. Response of farmland reptiles to agricultural intensification: Collapse of the common adder Vipera berus and the western green lizard Lacerta bilineata in a hedgerow landscape. Anim. Conserv. 2022, 25, 849–864. [Google Scholar] [CrossRef]
- Baudry, J.; Jouin, A. De la Haie aux Bocages, Organisation, Dynamique et Gestion; INRA: Paris, France, 2003. [Google Scholar]
- Saint Girons, H. Structure et e’volution d’une petite population de Vipera aspis (L.) dans une re´gion de Bocage de l’ouest de la France. Terre Vie 1996, 51, 223–241. [Google Scholar]
- Jones, L.L.C.; Rorabaugh, J.C.; Winsor, H.; Murphy, J.C.; Rupel, K. Efficacy of low-speed road cruising for lizard detection at two sites in Arizona, USA. Herpetol. Conserv. Biol. 2022, 17, 278–289. [Google Scholar]
- Turner, F.B.; Medica, P.A. The distribution and abundance of the flat-tailed horned lizard (Phrynosoma mcallii). Copeia 1982, 4, 815–823. [Google Scholar] [CrossRef]
- Grant, T.J.; Doherty, P.F., Jr. Monitoring of the flat-tailed horned lizard with methods incorporating detection probability. J. Wild Manag. 2007, 71, 1050–1056. [Google Scholar] [CrossRef]
- Wilson, R.P.; McMahon, C.R. Measuring devices on wild animals: What constitutes acceptable practice? Front. Ecol. Environ. 2006, 4, 147–154. [Google Scholar] [CrossRef]
- Bonnet, X.; Billy, G.; Lakušić, M. Puncture versus capture: Which stresses animals the most? J. Comp. Physiol. B 2020, 190, 341–347. [Google Scholar] [CrossRef]
- Choo, Y.R.; Kudavidanage, E.P.; Amarasinghe, T.R.; Nimalrathna, T.; Chua, M.A.; Webb, E.L. Best practices for reporting individual identification using camera trap photographs. Glob. Ecol. Conserv. 2020, 24, e01294. [Google Scholar] [CrossRef]
- Chan, S.C.Y.; Scott, Y.; Chui, S.; Pretorius, Y.; Karczmarski1, L. Estimating population parameters of African elephants: A photographic mark-recapture application in a South African protected area. Demography and population ecology. Mamm. Biol. 2023, 102, 1231–1247. [Google Scholar] [CrossRef]
- Smolensky, N.L.; Fitzgerald, L.A. Distance sampling underestimates population densities of dune-dwelling lizards. J. Herpetol. 2010, 44, 372–381. [Google Scholar] [CrossRef]
- Perera, A.; Pérez-Mellado, V. Photographic identification as a non-invasive marking technique for lacertid lizards. Herp. Rev. 2004, 35, 349–350. [Google Scholar]
- Welbourne, D.J.; MacGregor, C.; Paull, D.; Lindenmayer, D.B. The effectiveness and cost of camera traps for surveying small reptiles and critical weight range mammals: A comparison with labour-intensive complementary methods. Wildl. Res. 2015, 42, 414–425. [Google Scholar] [CrossRef]
- Meek, R.; Luiselli, L. Living in patchy habitats: Substrate selection by basking sympatric lizards in contrasted anthropogenic habitats in western France. Russ. J. Herp. 2022, 29, 227–236. [Google Scholar] [CrossRef]
- Meek, R.; Luiselli, L. Juveniles are different: Substrate selection in juvenile green lizards Lacerta bilineata. Ethol. Ecol. Evol. 2020, 35, 687–697. [Google Scholar] [CrossRef]
- Rismiller, P.D.; Heldmaier, G. How photoperiod influences body temperature selection in Lacerta viridis. Oecologia 1988, 75, 125–131. [Google Scholar] [CrossRef]
- Deichsel, G.; Gleed-Owen, C.P.; Mayer, W. Lacerta bilineata (western green lizard) and Podarcis muralis (common wall lizard) United Kingdom, Dorset. Herpetol. Rev. 2007, 38, 100–101. [Google Scholar]
- Mole, S.R.C. Changes in relative abundance of the western green lizard Lacerta bilineata and the common wall lizard Podarcis muralis introduced onto Boscombe Cliffs, Dorset, UK. Herpetol. Bull. 2010, 15, 24–29. [Google Scholar]
- Gubanyi, J.A. Breeding colony of western green lacertas (Lacerta bilineata) confirmed in southwestern Topeka (Kansas). Trans. Kansas Acad. Sci. 2000, 103, 191–192. [Google Scholar] [CrossRef]
- Pernat, A.; Sellier, Y.; Preau, C.; Beaune, D. Effet du paturage sur le lizard vert occidental (Lacerta bilineata, Daudin, 1802) (Squamata: Lacertidae) en milieu de landes. Bull. de la Société Herpétologique de Fr. 2017, 161, 57–66. [Google Scholar]
- Saint Girons, H.; Castanet, J.; Bradshaw, S.; Baron, J.P. Demographie comparee de deux populations fran caises de Lacerta viridis (Laurenti, 1768). Rev. Ecol. (Terre Vie) 1989, 44, 361–386. [Google Scholar]
- Meek, R. Temporal distributions, habitat associations and behaviour of the green lizard (Lacerta bilineata) and wall lizard (Podarcis muralis) on roads in a fragmented landscape in Western France. Acta Herpetol. 2014, 9, 179–186. [Google Scholar] [CrossRef]
- Venchi, A. Lacerta bilineata Daudin, 1802. In Anfibi e Rettili del Lazio; Bologna, M.A., Capula, M., Carpaneto, G.M., Eds.; Fratelli Palombi Editori: Rome, Italy, 2000; pp. 82–83. [Google Scholar]
- Meek, R. Temporal trends in Podarcis muralis and Lacerta bilineata populations in a fragmented landscape in western France: Results from a 14 year time series. Herpetol. J. 2020, 30, 20–26. [Google Scholar] [CrossRef]
- Luiselli, L.; Stille, B.; Stille, M.; Buttemer, W.A.; Madsen, T. Mass-related differences in metabolic rate and fasting endurance explain divergence in seasonal activity of Mediterranean lizards. Amphibia-Reptilia 2022, 43, 225–234. [Google Scholar] [CrossRef]
- Diego-Rasilla, F.J. Human influence on the tameness of wall lizard, Podarcis muralis. Ital. J. Zool. 2003, 70, 225–228. [Google Scholar] [CrossRef]
- Welbourne, D.J.; Claridge, A.W.; Paull, D.J.; Ford, F. Camera-traps are a cost-effective method for surveying terrestrial squamates: A comparison with artificial refuges and pitfall traps. PLoS ONE 2020, 15, e0226913. [Google Scholar] [CrossRef]
- Spellerberg, I.F.; Fedor, P.J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Glob. Ecol. Biogeorg. 2003, 12, 177–179. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Ellison, A.M. A Primer of Ecological Statistics; Sinauer Associates: Sunderland, MA, USA, 2004; p. 510. [Google Scholar]
- Bailey, N.T.J. Statistical Methods in Biology; Cambridge University Press: Cambridge, UK, 1995; p. 255. [Google Scholar]
- Rain, R. Shannon Diversity Index Calculator. Available online: https://www.omnicalculator.com/ecology/shannon-index (accessed on 14 April 2023).
- Meek, R.; Luiselli, L.; Avery, R.A. Aspects of the demography of two Podarcis muralis populations in anthropogenic modified habitats in western France, based on a non-invasive sampling method. Herpetol. J. 2024, in press. [Google Scholar]
- Sacchi, R.; Marchesi, M.; Gentilli, A.; Pellitteri-Rosa, D.; Scali, S.; Borelli, A. Western green lizards (Lacerta bilineata) do not select the composition or structure of the ecotones in Northern Italy. North-West. J. Zool. 2011, 7, 213–221. [Google Scholar]
- Rugiero, L.; Capula, M.; Di Vittorio, M.; Dendi, D.; Meek, R.; Luiselli, L. Ontogenetic habitat use and density of the green lizard (Lacerta bilineata) in contrasted landscapes in France and Italy. Conservation 2021, 1, 1–16. [Google Scholar] [CrossRef]
- Cooper, W.E., Jr.; Perez-Mellado, V.; Vitt, L.J. Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. J. Zool. 2004, 262, 243–255. [Google Scholar] [CrossRef]
- Bateman, P.W.; Fleming, P.A. To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. J. Zool. 2009, 277, 1–14. [Google Scholar] [CrossRef]
- Meek, R.; Luiselli, L. Decision making under risk of predation in the western whip snake, Heirophis viridiflavus. Herpetol. Bull. 2021, 157, 32–34. [Google Scholar] [CrossRef]
- Davies, Z.G.; Pullin, A.S. Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. Landsc. Ecol. 1987, 22, 333–351. [Google Scholar] [CrossRef]
- Lecq, S.; Loisel, A.; Brischoux, F.; Mullin, S.J.; Bonnet, X. Importance of ground refuges for the biodiversity in agricultural hedgerows. Ecol. Ind. 2017, 72, 615–626. [Google Scholar] [CrossRef]
- Lecq, S.; Loisel, A.; Mullin, S.J.; Bonnet, X. Manipulating hedgerow quality: Embankment size influences animal biodiversity in a peri-urban context. Urban For. Urban Green. 2018, 35, 1–7. [Google Scholar] [CrossRef]
Number of Lizards | Number of Sightings (Photographs) | Ratio of Females/Males | Ratio of Female to Male Sighting Frequency Counts | Ratio of Adult to Juvenile Sightings (m + f)/j | |
---|---|---|---|---|---|
2020 males | 6 | 20 | |||
2020 females | 10 | 32 | 1.67 | 1.6 | 17.3 |
2020 juveniles | 2 | 3 | |||
2021 males | 7 | 27 | |||
2021 females | 3 | 20 | 0.42 | 0.74 | 1.12 |
2021 juveniles | 7 | 42 | |||
2022 males | 6 | 38 | |||
2022 females | 3 | 16 | 0.5 | 0.42 | 1.5 |
2022 juveniles | 9 | 36 | |||
2023 males | 6 | 25 | |||
2023 females | 5 | 42 | 0.83 | 1.68 | 0.65 |
2023 juveniles | 20 | 103 |
m | ± | b | ± | t | p | N | |
---|---|---|---|---|---|---|---|
Males | 0.22 | 0.06 | 1.34 | 0.41 | 4.09 | 0.001 | 25 |
Females | 0.05 | 0.06 | 2.82 | 0.64 | 0.86 | 0.41 | 21 |
Juveniles | 0.25 | 0.04 | 0.97 | 0.31 | 5.83 | <0.0001 | 83 |
Pooled (m + j) | 0.24 | 0.03 | 1.1 | 0.24 | 7.27 | <0.0001 | 63 |
E (Pooled) | H (Pooled) | E (Males) | H (Males) | E (Females) | H (Females) | E (Juveniles) | H (Juveniles) | |
---|---|---|---|---|---|---|---|---|
2020 | 0.9 | 2.55 | 0.80 | 1.13 | 0.90 | 1.99 | 0.92 | 0.64 |
2021 | 0.9 | 2.49 | 0.91 | 1.64 | 0.73 | 0.80 | 0.82 | 1.6 |
2022 | 0.85 | 2.47 | 0.72 | 1.28 | 0.69 | 0.48 | 0.87 | 2.0 |
2023 | 0.86 | 2.83 | 0.69 | 1.1 | 0.89 | 1.23 | 0.86 | 2.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meek, R.; Luiselli, L. Application of Univariate Diversity Metrics to the Study of the Population Ecology of the Lizard Lacerta bilineata in an Ecotonal Habitat. Diversity 2024, 16, 169. https://doi.org/10.3390/d16030169
Meek R, Luiselli L. Application of Univariate Diversity Metrics to the Study of the Population Ecology of the Lizard Lacerta bilineata in an Ecotonal Habitat. Diversity. 2024; 16(3):169. https://doi.org/10.3390/d16030169
Chicago/Turabian StyleMeek, Roger, and Luca Luiselli. 2024. "Application of Univariate Diversity Metrics to the Study of the Population Ecology of the Lizard Lacerta bilineata in an Ecotonal Habitat" Diversity 16, no. 3: 169. https://doi.org/10.3390/d16030169
APA StyleMeek, R., & Luiselli, L. (2024). Application of Univariate Diversity Metrics to the Study of the Population Ecology of the Lizard Lacerta bilineata in an Ecotonal Habitat. Diversity, 16(3), 169. https://doi.org/10.3390/d16030169