Wind Farms and Power Lines Reduced the Territory Status and Probability of Fledgling Production in the Eurasian Goshawk Accipiter gentilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Construction Disturbance
2.3. Observing Territory Status and Production of Fledglings
2.4. Statistics
3. Results
3.1. Observed Goshawks and Territory Status
3.2. Breeding
3.3. Number of Fledglings
4. Discussion
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- REN21. Renewables 2022 Global Status Report; REN21: Paris, France, 2022; pp. 1–309. [Google Scholar]
- IPCC. Climate change 2021: The physical science basis. In Summary for Policy Makers; IPCC: Geneva, Switzerland, 2021; pp. 1–40. [Google Scholar]
- IPBES. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; pp. 1–1144. [Google Scholar]
- Norberg, A.; Abrego, N.; Blanchet, F.G.; Adler, F.R.; Anderson, B.J.; Anttila, J.; Araujo, M.B.; Dallas, T.; Dunson, D.; Elith, J.; et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 2019, 89, 24. [Google Scholar] [CrossRef]
- Piirainen, S.; Lehikoinen, A.; Husby, M.; Kålås, J.A.; Lindström, Å.; Ovaskainen, O. Species distributions models may predict accurately future distributions but poorly how distributions change: A critical perspective on model validation. Divers. Distrib. 2023, 29, 654–665. [Google Scholar] [CrossRef]
- Speed, J.D.; Evankow, A.M.; Petersen, T.K.; Ranke, P.S.; Nilsen, N.H.; Turner, G.; Aagaard, K.; Bakken, T.; Davidsen, J.G.; Dunshea, G.; et al. A regionally coherent ecological fingerprint of climate change, evidenced from natural history collections. Ecol. Evol. 2022, 12, e9471. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Stephens, P.A.; Mason, L.R.; Green, R.E.; Gregory, R.D.; Sauer, J.R.; Alison, J.; Aunins, A.; Brotons, L.; Butchart, S.H.M.; Campedelli, T.; et al. Consistent response of bird populations to climate change on two continents. Science 2016, 352, 84–87. [Google Scholar] [CrossRef]
- Spooner, F.E.; Pearson, R.G.; Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 2018, 24, 4521–4531. [Google Scholar] [CrossRef]
- Rigal, S.; Dakos, V.; Alonso, H.; Aunins, A.; Benko, Z.; Brotons, L.; Chodkiewicz, T.; Chylarecki, P.; de Carli, E.; del Moral, J.C.; et al. Farmland practices are driving bird population decline across europe. Proc. Natl. Acad. Sci. USA 2023, 120, 9. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.J.; Vickery, J.A.; Norris, K. Farmland biodiversity and the footprint of agriculture. Science 2007, 315, 381–384. [Google Scholar] [CrossRef]
- Fuller, R.J.; Gregory, R.D.; Gibbons, D.W.; Marchant, J.H.; Wilson, J.D.; Baillie, S.R.; Carter, N. Population declines and range contractions among lowland farmland birds in britain. Conserv. Biol. 1995, 9, 1425–1441. [Google Scholar] [CrossRef]
- Gregory, R.D.; van Strien, A.; Voříšek, P.; Meyling, A.W.G.; Noble, D.G.; Foppen, R.P.B.; Gibbons, D.W. Developing indicators for european birds. Philos. Trans. R. Soc. B-Biol. Sci. 2005, 360, 269–288. [Google Scholar] [CrossRef]
- Husby, M.; Hoset, K.; Butler, S. Non-random sampling along rural–urban gradients may reduce reliability of multi-species farmland bird indicators and their trends. IBIS 2021, 163, 579–592. [Google Scholar] [CrossRef]
- Lu, X.; McElroy, M.B.; Kiviluoma, J. Global potential for wind-generated electricity. Proc. Natl. Acad. Sci. USA 2009, 106, 10933–10938. [Google Scholar] [CrossRef] [PubMed]
- CBD. Cop15: Nations Adopt four Goals, 23 Targets for 2030 in Landmark in Biodiversity Agreement; Convention on Biological Diversity: New York, NY, USA, 2022. [Google Scholar]
- Fraixedas, S.; Lindén, A.; Meller, K.; Lindström, Å.; Keišs, O.; Kålås, J.A.; Husby, M.; Leivits, A.; Leivits, M.; Lehikoinen, A. Substantial decline of northern european peatland bird populations: Consequences of drainage. Biol. Conserv. 2017, 214, 223–232. [Google Scholar] [CrossRef]
- Yrjölä, R.A.; Tanskanen, A.; Sarvanne, H.; Vickholm, J.; Lehikoinen, A. Can common forest bird species tolerate disturbances in neighbouring areas? A case study of the vuosaari harbour construction in southern finland. Ornis Fenn. 2018, 95, 49–60. [Google Scholar] [CrossRef]
- Garces, A.; Queiroga, F.; Prada, J.; Pires, I. A review of the mortality of wild fauna in europe in the last century: The consequences of human activity. J. Wildl. Biodivers. 2020, 4, 34–55. [Google Scholar] [CrossRef]
- Pringle, S.; Chiweshe, N.; Steward, P.R.; Mund, P.J.; Dallimer, M. Rapid redistribution of agricultural land alters avian richness, abundance, and functional diversity. Ecol. Evol. 2019, 9, 12259–12271. [Google Scholar] [CrossRef] [PubMed]
- Burton, N.H.K.; Armitage, M.J.S. Settlement of redshank tringa totanus following winter habitat loss: Effects of prior knowledge and age. Ardea 2008, 96, 191–205. [Google Scholar] [CrossRef]
- May, R.; Jackson, C.R.; Middel, H.; Stokke, B.G.; Verones, F. Life-cycle impacts of wind energy development on bird diversity in norway. Environ. Impact Assess. Rev. 2021, 90, 11. [Google Scholar] [CrossRef]
- Brumm, H.; Naguib, M. Environmental acoustics and the evolution of bird song. In Advances in the Study of Behavior; Naguib, M., Zuberbuhler, K., Clayton, N.S., Janik, V.M., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2009; Volume 40, pp. 1–33. [Google Scholar]
- Reijnen, R.; Foppen, R. Effect of road traffic on the breeding site tenacity of male willow warblers (Phylloscopus trochilus). J. Fur Ornithol. 1991, 132, 291–295. [Google Scholar] [CrossRef]
- Foppen, R.; Reijnen, R. The effects of car traffic on breeding bird populations in woodland.2. Breeding dispersal of male willow warblers (Phylloscopus trochilus) in relation to the proximity of a highway. J. Appl. Ecol. 1994, 31, 95–101. [Google Scholar] [CrossRef]
- Francis, C.D.; Ortega, C.P.; Cruz, A. Noise pollution changes avian communities and species interactions. Curr. Biol. 2009, 19, 1415–1419. [Google Scholar] [CrossRef] [PubMed]
- Halfwerk, W.; Holleman, L.J.M.; Lessells, C.M.; Slabbekoorn, H. Negative impact of traffic noise on avian reproductive success. J. Appl. Ecol. 2011, 48, 210–219. [Google Scholar] [CrossRef]
- Husby, M.; Pearson, M. Wind farms and power lines have negative effects on territory occupancy in eurasian eagle owls (Bubo bubo). Animals 2022, 12, 1089. [Google Scholar] [CrossRef] [PubMed]
- Shannon, G.; McKenna, M.F.; Angeloni, L.M.; Crooks, K.R.; Fristrup, K.M.; Brown, E.; Warner, K.A.; Nelson, M.D.; White, C.; Briggs, J.; et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 2016, 91, 982–1005. [Google Scholar] [CrossRef] [PubMed]
- Stokke, B.G.; Nygård, T.; Falkdalen, U.; Pedersen, H.C.; May, R. Effect of tower base painting on willow ptarmigan collision rates with wind turbines. Ecol. Evol. 2020, 10, 5670–5679. [Google Scholar] [CrossRef] [PubMed]
- May, R.; Nygård, T.; Falkdalen, U.; Åström, J.; Hamre, Ø.; Stokke, B.G. Paint it black: Efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities. Ecol. Evol. 2020, 9, 8927–8935. [Google Scholar] [CrossRef]
- De Lucas, M.; Janss, G.F.E.; Ferrer, M. Birds and Wind Farms: Risk Assessment and Mitigation; Quercus/Libreria Linneo: Madrid, Spain, 2007; pp. 1–275. [Google Scholar]
- Loss, S.R.; Will, T.; Marra, P. Direct mortality of birds from anthropogenic causes. In Annual Review of Ecology, Evolution, and Systematics; Annual Reviews; Futuyma, D.J., Ed.; Palo Alto: Santa Clara, CA, USA, 2015; Volume 46, pp. 99–120. [Google Scholar]
- Watson, R.T.; Kolar, P.S.; Ferrer, M.; Nygard, T.; Johnston, N.; Hunt, W.G.; Smit-Robinson, H.A.; Farmer, C.J.; Huso, M.; Katzner, T.E. Raptor interactions with wind energy: Case studies from around the world. J. Raptor Res. 2018, 52, 1–18. [Google Scholar] [CrossRef]
- Pearson, M.; Husby, M. Supplementary feeding improves breeding performance in eurasian eagle owl Bubo bubo. Ornis Fenn. 2021, 98, 46–58. [Google Scholar] [CrossRef]
- Burger, J. The effect of human activity on birds at a coastal bay. Biol. Conserv. 1981, 21, 231–241. [Google Scholar] [CrossRef]
- Hagen, Y. Rovfuglene og Viltpleien; Universitetsforlaget: Oslo, Norway, 1952. [Google Scholar]
- Haftorn, S. Norges fugler; Universitetsforlaget: Oslo, Norway, 1971. [Google Scholar]
- Cramp, S.; Simmons, K.E.L. The Birds of the Western Palearctic. In Hawks to Bustards; Oxford University Press: Oxford, UK, 1980; Volume 2. [Google Scholar]
- Rutz, C.; Bijlsma, R.G.; Marquiss, M.; Kenward, R.E. Population limitations in the northern goshawk in europe: A review with case studies. Stud. Avian Biol. 2006, 31, 158–197. [Google Scholar]
- Shimmings, P.; Øien, I.J. Bestandsestimater for Norske Hekkefugler; BirdLife Norway: Trondheim, Norway, 2015; pp. 1–268. [Google Scholar]
- Stokke, B.; Dale, S.; Jacobsen, K.-O.; Lislevand, T.; Solvang, R.; Strøm, H. Fugler aves—Norge. In Norsk Rødliste for Arter; Artsdatabanken: Trondheim, Norway, 2021; Available online: https://artsdatabanken.no/lister/rodlisteforarter/2021/ (accessed on 18 January 2024).
- Nygård, T. Hønsehauken i Nord-Trøndelag 1994–2004. In Bestandsstatus og Bruk av Flybilder til Forvaltning; Norsk institutt for naturforskning: Trondheim, Norway, 2005; pp. 1–24. [Google Scholar]
- Widen, P. How, and why, is the goshawk (Accipiter gentilis) affected by modern forest management in Fennoscandia? J. Raptor Res. 1997, 31, 107–113. [Google Scholar]
- Mahon, T.; Doyle, F.I. Effects of timber harvesting near nest sites on the reproductive success of northern goshawks (Accipiter gentilis). J. Raptor Res. 2005, 39, 335–341. [Google Scholar]
- Grubb, T.G.; Pater, L.L.; Gatto, A.E.; Delaney, D.K. Response of nesting northern goshawks to logging truck noise in northern arizona. J. Wildl. Manag. 2013, 77, 1618–1625. [Google Scholar] [CrossRef]
- Moser, B.W.; Garton, E.O. Short-term effects of timber harvest and weather on northern goshawk reproduction in northern idaho. J. Raptor Res. 2009, 43, 1–10. [Google Scholar] [CrossRef]
- Morrison, M.L.; Young, R.J.; Romsos, J.S.; Golightly, R. Restoring forest raptors: Influence of human disturbance and forest condition on northern goshawks. Restor. Ecol. 2011, 19, 273–279. [Google Scholar] [CrossRef]
- Vysochyn, M.O. Population dynamics and types of habitats at breeding sites of raptors (Falconiformes) of the donetsk ridge along a gradient of anthropogenic disturbance. Regul. Mech. Biosyst. 2019, 10, 464–469. [Google Scholar] [CrossRef]
- Langgemach, T.; Dürr, T. Informationen Über Einflüsse der Windenergienutzung auf Vögel. Stand 10. Mai 2021, Aktualisierungen außer Fundzahlen Hervorgehoben; Nennhausen/OT Buckow: Staatliche Vogelschutzwarte, Germany, 2021; pp. 1–145. [Google Scholar]
- Barrios, L.; Rodriguez, A. Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. J. Appl. Ecol. 2004, 41, 72–81. [Google Scholar] [CrossRef]
- Carrete, M.; Sanchez-Zapata, J.A.; Benitez, J.R.; Lobon, M.; Donazar, J.A. Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol. Conserv. 2009, 142, 2954–2961. [Google Scholar] [CrossRef]
- Smith, J.A.; Dwyer, J.F. Avian interactions with renewable energy infrastructure: An update. Condor 2016, 118, 411–423. [Google Scholar] [CrossRef]
- Kenward, R. The Goshawk; T & A D Poyser: Stafford, UK, 2006; 360p. [Google Scholar]
- Bevanger, K.; Overskaug, K. Utility structures as a mortality factor for raptors and owls in norway. In Holarctic Birds of Prey; Chancellor, R.D., Meyburg, B.U., Ferroro, J.J., Eds.; Adenex-Wwgbp: Merida, Spain, 1998; pp. 381–392. [Google Scholar]
- Kenward, R.E. Goshawk hunting behaviour and range size as a function of food and habitat availability. J. Anim. Ecol. 1982, 51, 69–80. [Google Scholar] [CrossRef]
- Tornberg, R.; Korpimäki, E.; Byholm, P. Ecology of the northern goshawk in fennoscandia. Stud. Avian Biol. 2006, 31, 141–157. [Google Scholar]
- Nygård, T.; Wiseth, B.; Halley, D.; Grønnesby, S.; Grønlien, P.M. Hønsehauken i Skogbrukslandskapet; NINA Brage: Trondheim, Norway, 2001; pp. 79–88. [Google Scholar]
- Selås, V.; Steen, O.F.; Johnsen, J.T. Goshawk breeding densities in relation to mature forest in southeastern norway. For. Ecol. Manage. 2008, 256, 446–451. [Google Scholar] [CrossRef]
- Solonen, T.; Lokki, H.; Sulkava, S. Diet and brood size in rural and urban northern goshawks accipiter gentilis in southern finland. Avian Biol. Res. 2019, 12, 3–9. [Google Scholar] [CrossRef]
- Widén, P. Goshawk predation during winter, spring and summer in a boreal forest area of central sweden. Holarct. Ecol. 1987, 10, 104–109. [Google Scholar] [CrossRef]
- Johansen, H.; Selås, V.; Fagerland, K.; Johnsen, J.T.; Sveen, B.A.; Tapia, L.; Steen, R. Goshawk diet during the nestling period in farmland and forest-dominated areas in southern norway. Ornis Fenn. 2007, 84, 181–188. [Google Scholar]
- Grønnesby, S.; Nygård, T. Using time-lapse video monitoring to study prey selection by breeding goshawks accipiter gentilis in central norway. Ornis Fenn. 2000, 77, 117–129. [Google Scholar]
- Rubolini, D.; Bassi, E.; Bogliani, G. Galeotti and R. Garavaglia. Eagle owl bubo bubo and power line interactions in the italian alps. Bird Conserv. Int. 2001, 11, 319–324. [Google Scholar] [CrossRef]
- Bye, F.N. Hønsehauk accipiter gentilis. In Norsk Vinterfuglatlas. Fuglenes Utbredelse, Bestandsstørrelse Og Økologi Vinterstid; Svorkmo-Lundberg, T., Bakken, V., Helberg, M., Mork, K., Røer, J.E., Sæbø, S., Eds.; Norsk Ornitologisk Forening: Trondheim, Norway, 2006; pp. 152–153. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carre, G.; Marquez, J.R.G.; Gruber, B.; Lafourcade, B.; Leitao, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model selection and multimodel inference. In A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Lo, S.; Andrews, S. To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. Front. Psychol. 2015, 6, 1–16. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Rodriguez, S.A.; Kennedy, P.L.; Parker, T.H. Timber harvest and tree size near nests explains variation in nest site occupancy but not productivity in northern goshawks (Accipiter gentilis). For. Ecol. Manage. 2016, 374, 220–229. [Google Scholar] [CrossRef]
- Multiconsult. Anbefalte Hensynssoner for Sårbare Arter av Fugl; Multiconsult: Oslo, Norway, 2018; p. 11. [Google Scholar]
- Ruddock, M.; Whitfield, D.P. A Review of Disturbance Distances in Selected Bird Species; NatureScot: Inverness, Scotland, 2007; pp. 1–181. [Google Scholar]
- Marques, A.T.; Batalha, H.; Bernardino, J. Bird displacement by wind turbines: Assessing current knowledge and recommendations for future studies. Birds 2021, 2, 34. [Google Scholar] [CrossRef]
- Illner, H. Comments on the Report “Wind Energy Developments and Natura 2000”, Edited by the European Commission in October 2010. Available online: http://ec.europa.eu/environment/nature/natura2000/management/docs/Wind_farms.pdf:2011 (accessed on 18 January 2024).
- Lehikoinen, A.; Lindén, A.; Byholm, P.; Ranta, E.; Saurola, P.; Valkama, J.; Kaitala, V.; Linden, H. Impact of climate change and prey abundance on nesting success of a top predator, the goshawk. Oecologia 2013, 171, 283–293. [Google Scholar] [CrossRef]
- Mönkkönen, M.; Husby, M.; Tornberg, R.; Helle, P.; Thomson, R.L. Predation as a landscape effect: The trading off by prey species between predation risks and protection benefits. J. Anim. Ecol. 2007, 76, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.M.; Kennedy, P.L. Effects of supplemental food on size and survival of juvenile northern goshawks. Auk 1996, 113, 200–208. [Google Scholar]
- Dewey, S.R.; Kennedy, P.L. Effects of supplemental food on parental-care strategies and juvenile survival of northern goshawks. Auk 2001, 118, 352–365. [Google Scholar] [CrossRef]
- Byholm, P.; Kekkonen, M. Food regulates reproduction differently in different habitats: Experimental evidence in the goshawk. Ecology 2008, 89, 1696–1702. [Google Scholar] [CrossRef] [PubMed]
Wind Farm | N of Turbines | Max Height (m) | Area (km2) | Road Length (km) |
---|---|---|---|---|
Sørmarkfjellet | 31 | 145.5 | 9.3 | 27 |
Roan | 71 | 145.5 | 24.5 | 50.5 |
Harbaksfjellet | 30 | 145.5 | 9.4 | 19 |
Kvenndalsfjellet | 27 | 145.5 | 9.0 | 21 |
Storheia | 80 | 145.5 | 37.9 | 59 |
Frøya | 14 | 180 | 6.6 | 10 |
Hitra 2 | 26 | 145.5 | 18.3 | 18 |
Geitfjellet | 43 | 154 | 25.4 | 42 |
Total | 322 | 145.5–180 | 140.4 | 246.5 |
Distance Category | Wind Turbine | Powerline | Both Constructions |
---|---|---|---|
<1 km | 0 | 4 | 4 |
1–2 | 0 | 4 | 4 |
2–3 | 2 | 3 | 4 |
≥3 km | 53 | 44 | 43 |
Change | Territory Status | Breeding Success | N of Fledglings | ||||||
---|---|---|---|---|---|---|---|---|---|
<3 km | ≥3 km | Total | <3 km | ≥3 km | Total | <3 km | ≥3 km | Total | |
Lower/fewer | 7 | 12 | 19 | 4 | 10 | 14 | 4 | 17 | 21 |
Stable | 5 | 24 | 29 | 7 | 22 | 29 | 5 | 10 | 15 |
Increased/more | 0 | 7 | 7 | 1 | 8 | 9 | 3 | 13 | 16 |
Unknown | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 3 | 3 |
Total number | 12 | 43 | 55 | 12 | 43 | 55 | 12 | 43 | 55 |
Target Variable | Coefficient | SE | t | n | p |
---|---|---|---|---|---|
A: Change in territory status | 0.026 | 0.016 | 1.647 | 55 | 0.053 |
B: Change in territory status | 1.331 | 0.774 | 1.721 | 55 | 0.046 |
A: Change in breeding success | 0.024 | 0.016 | 1.523 | 52 | 0.067 |
B: Change in breeding success | 0.020 | 0.014 | 1.428 | 52 | 0.080 |
A: Change in number of fledglings | 0.011 | 0.617 | 0.018 | 52 | 0.493 |
B: Change in number of fledglings | 0.003 | 0.012 | 0.206 | 52 | 0.419 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husby, M. Wind Farms and Power Lines Reduced the Territory Status and Probability of Fledgling Production in the Eurasian Goshawk Accipiter gentilis. Diversity 2024, 16, 128. https://doi.org/10.3390/d16020128
Husby M. Wind Farms and Power Lines Reduced the Territory Status and Probability of Fledgling Production in the Eurasian Goshawk Accipiter gentilis. Diversity. 2024; 16(2):128. https://doi.org/10.3390/d16020128
Chicago/Turabian StyleHusby, Magne. 2024. "Wind Farms and Power Lines Reduced the Territory Status and Probability of Fledgling Production in the Eurasian Goshawk Accipiter gentilis" Diversity 16, no. 2: 128. https://doi.org/10.3390/d16020128