Effects of Land Cover on the Taxonomic and Functional Diversity of the Bird Communities on an Urban Subtropical Mountain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Bird Survey
2.3. Land Cover Types and Diversity
2.4. Functional Traits
2.5. Taxonomic and Functional Diversity
2.6. Statistical Analyses
3. Results
3.1. Principal Component Analysis Results
3.2. Bird Survey Results
3.3. Influence of Land Cover Types on Avian Community Diversity
3.4. Influence of Season on Avian Community Diversity
3.5. Influence of Land Cover Types on Avian Community Composition
3.6. Associations between Land Cover Types and Bird Functional Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Li, X.; Song, W.; Li, Q.; Onditi, K.; Khanal, L.; Jiang, X. Small mammal species richness and turnover along elevational gradient in Yulong Mountain, Yunnan, Southwest China. Ecol. Evol. 2020, 10, 2545–2558. [Google Scholar] [CrossRef]
- Wang, J.; Hu, A.; Meng, F.; Zhao, W.; Yang, Y.; Soininen, J.; Shen, J.; Zhou, J. Embracing mountain microbiome and ecosystem functions under global change. New Phytol. 2022, 234, 1987–2002. [Google Scholar] [CrossRef]
- Rahbek, C.; Borregaard, M.K.; Colwell, R.K.; Dalsgaard, B.; Holt, B.G.; Morueta-Holme, N.; Nogues-Bravo, D.; Whittaker, R.J.; Fjeldså, J. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 2019, 365, 1108–1113. [Google Scholar] [CrossRef]
- He, X.; Ziegler, A.D.; Elsen, P.R.; Feng, Y.; Baker, J.C.A.; Liang, S.; Holden, J.; Spracklen, D.V.; Zeng, Z. Accelerating global mountain forest loss threatens biodiversity hotspots. One Earth 2023, 6, 303–315. [Google Scholar] [CrossRef]
- Matuoka, M.A.; Benchimol, M.; de Almeida-Rocha, J.M.; Morante-Filho, J.C. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecol. Indic. 2020, 116, 106471. [Google Scholar] [CrossRef]
- Coetzee, B.W.T.; Chown, S.L. Land-use change promotes avian diversity at the expense of species with unique traits. Ecol. Evol. 2016, 6, 7610–7622. [Google Scholar] [CrossRef]
- Desrochers, R.E.; Kerr, J.T.; Currie, D.J. How, and how much, natural cover loss increases species richness. Global Ecol. Biogeogr. 2011, 20, 857–867. [Google Scholar] [CrossRef]
- Hayes, W.M.; Fisher, J.C.; Pierre, M.A.; Bicknell, J.E.; Davies, Z.G. Bird communities across varying landcover types in a Neotropical city. Biotropica 2020, 52, 151–164. [Google Scholar] [CrossRef]
- Shoffner, A.; Wilson, A.M.; Tang, W.; Gagné, S.A. The relative effects of forest amount, forest configuration, and urban matrix quality on forest breeding birds. Sci. Rep. 2018, 8, 17140. [Google Scholar] [CrossRef] [PubMed]
- Maseko, M.S.T.; Zungu, M.M.; Ehlers Smith, D.A.; Ehlers Smith, Y.C.; Downs, C.T. Effects of habitat-patch size and patch isolation on the diversity of forest birds in the urban-forest mosaic of Durban, South Africa. Urban Ecosyst. 2020, 23, 533–542. [Google Scholar] [CrossRef]
- Soares, F.C.; Panisi, M.; Sampaio, H.; Soares, E.; Santana, A.; Buchanan, G.M.; Leal, A.I.; Palmeirim, J.M.; Lima, R.F. Land-use intensification promotes non-native species in a tropical island bird assemblage. Anim. Conserv. 2020, 23, 573–584. [Google Scholar] [CrossRef]
- Tews, J.; Brose, U.; Grimm, V.; Tielbörger, K.; Wichmann, M.C.; Schwager, M.; Jeltsch, F. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 2004, 31, 79–92. [Google Scholar] [CrossRef]
- Basnet, T.B.; Rokaya, M.B.; Bhattarai, B.P.; Münzbergová, Z. Heterogeneous Landscapes on Steep Slopes at Low Altitudes as Hotspots of Bird Diversity in a Hilly Region of Nepal in the Central Himalayas. PLoS ONE 2016, 11, e0150498. [Google Scholar] [CrossRef] [PubMed]
- Yabuhara, Y.; Yamaura, Y.; Akasaka, T.; Yamanaka, S.; Nakamura, F. Seasonal variation in patch and landscape effects on forest bird communities in a lowland fragmented landscape. For. Ecol. Manag. 2019, 454, 117140. [Google Scholar] [CrossRef]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Miller-Rushing, A.J.; Primack, R.B.; Devictor, V.; Corlett, R.T.; Cumming, G.S.; Loyola, R.; Maas, B.; Pejchar, L. How does habitat fragmentation affect biodiversity? A controversial question at the core of conservation biology. Biol. Conserv. 2019, 232, 271–273. [Google Scholar] [CrossRef]
- Newbold, T.; Scharlemann, J.P.W.; Butchart, S.H.M.; Sekercioğlu, C.H.; Alkemade, R.; Booth, H.; Purves, D.W. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. B-Biol. Sci. 2013, 280, 20122131. [Google Scholar] [CrossRef]
- Tryjanowski, P.; Morelli, F.; Mikula, P.; Krištín, A.; Indykiewicz, P.; Grzywaczewski, G.; Kronenberg, J.; Jerzak, L. Bird diversity in urban green space: A large-scale analysis of differences between parks and cemeteries in Cen-tral Europe. Urban For. Urban Gree. 2017, 27, 264–271. [Google Scholar] [CrossRef]
- Parra-Torres, Y.; Ramírez, F.; Afán, I.; Aguzzi, J.; Bouten, W.; Forero, M.G.; Navarro, J. Behavioral rhythms of an opportunistic predator living in anthropogenic landscapes. Mov. Ecol. 2020, 8, 17. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, G.; Ma, H.; Wu, Y.; Zhang, W.; Zhang, Y.; Li, C.; de Boer, W.F. Bird communities’ responses to human-modified landscapes in the southern Anhui Mountainous Area. Avian Res. 2022, 13, 100006. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Zha, D.; Yang, S.; Huang, Z.Y.X.; Boer, W.F. Assembly processes of waterbird communities across subsidence wetlands in China: A functional and phylogenetic approach. Divers. Distrib. 2019, 25, 1118–1129. [Google Scholar] [CrossRef]
- Schaaf, A.A.; Gomez, D.; Tallei, E.; Vivanco, C.G.; Ruggera, R.A. Responses of functional traits in cavity-nesting birds to logging in subtropical and temperate forests of the Americas. Sci. Rep. 2021, 11, 24309. [Google Scholar] [CrossRef]
- Weideman, E.A.; Slingsby, J.A.; Thomson, R.L.; Coetzee, B.T.W. Land cover change homogenizes functional and phylogenetic diversity within and among African savanna bird assemblages. Landsc. Ecol. 2020, 35, 145–157. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Tan, M.; Wang, Y. Influences of population pressure change on vegetation greenness in China’s mountainous areas. Ecol. Evol. 2017, 7, 9041–9053. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Y.; Fang, X.; Zhao, S.; Wu, Y.; Zhang, H.; Cui, L.; Cui, P. Effects of Environmental Factors on Bird Communities in Different Urbanization Grades: An Empirical Study in Lishui, a Mountainous Area of Eastern China. Animals 2023, 13, 882. [Google Scholar] [CrossRef]
- Bibby, C.J. Bird Census Techniques; Elsevier Science: Burlington, MA, USA, 2012; ISBN 978-0-12-095830-6. [Google Scholar]
- Zheng, G. A Checklist on the Classification and Distribution of the Birds of China, 3rd ed.; Science Press: Beijing, China, 2017. [Google Scholar]
- Wilman, H.; Belmaker, J.; Simpson, J.; de La Rosa, C.; Rivadeneira, M.M.; Jetz, W. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 2014, 95, 2027. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef]
- Dray, S.; Choler, P.; Dolédec, S.; Peres-Neto, P.R.; Thuiller, W.; Pavoine, S.; ter Braak, C.J.F. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 2014, 95, 14–21. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Sasaki, K.; Hotes, S.; Kadoya, T.; Yoshioka, A.; Wolters, V. Landscape associations of farmland bird diversity in Germany and Japan. Glob. Ecol. Conserv. 2020, 21, e00891. [Google Scholar] [CrossRef]
- Yang, X.; Tan, X.; Chen, C.; Wang, Y. The influence of urban park characteristics on bird diversity in Nanjing, China. Avian Res. 2020, 11, 45. [Google Scholar] [CrossRef]
- Zakkak, S.; Radovic, A.; Nikolov, S.C.; Shumka, S.; Kakalis, L.; Kati, V. Assessing the effect of agricultural land abandonment on bird communities in southern-eastern Europe. J. Environ. Manag. 2015, 164, 171–179. [Google Scholar] [CrossRef]
- Katuwal, H.B.; Pradhan, N.M.B.; Thakuri, J.J.; Bhusal, K.P.; Aryal, P.C.; Thapa, I. Effect of Urbanization and Seasonality in Bird Communities of Kathmandu Valley, Nepal. Proc. Zool. Soc. 2018, 71, 103–113. [Google Scholar] [CrossRef]
- Neves, K.; Moura, M.R.; Maravalhas, J.; Pacheco, R.; Pie, M.R.; Schultz, T.R.; Vasconcelos, H.L. Functional richness shows spatial scale dependency in Pheidole ant assemblages from Neotropical savannas. Ecol. Evol. 2019, 9, 11734–11741. [Google Scholar] [CrossRef]
- Ibarra, J.T.; Martin, K. Biotic homogenization: Loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 2015, 192, 418–427. [Google Scholar] [CrossRef]
- Altamirano, T.A.; de Zwaan, D.R.; Ibarra, J.T.; Wilson, S.; Martin, K. Treeline ecotones shape the distribution of avian species richness and functional diversity in south temperate mountains. Sci. Rep. 2020, 10, 18428. [Google Scholar] [CrossRef] [PubMed]
- Mason, N.W.H.; Mouillot, D.; Lee, W.G.; Wilson, J.B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 2005, 111, 112–118. [Google Scholar] [CrossRef]
- Jacoboski, L.I.; Hartz, S.M. Using functional diversity and taxonomic diversity to assess effects of afforestation of grassland on bird communities. Perspect. Ecol. Conser. 2020, 18, 103–108. [Google Scholar] [CrossRef]
- Ding, Z.; Liang, J.; Hu, Y.; Zhou, Z.; Sun, H.; Liu, L.; Liu, H.; Hu, H.; Si, X. Different responses of avian feeding guilds to spatial and environmental factors across an elevation gradient in the central Himalaya. Ecol. Evol. 2019, 9, 4116–4128. [Google Scholar] [CrossRef] [PubMed]
- Aschoff, J. Thermal conductance in mammals and birds: Its dependence on body size and crcadian phase. Comp. Biochem. Physiol. Part A Physiol. 1981, 69, 611–619. [Google Scholar] [CrossRef]
Trait Type | Traits | Categories |
---|---|---|
Resource quantity | Body mass | Continuous |
Diet guild | PlantSeed (feeding on plant and seeds); FruiNect (feeding on fruits and nectar); Invertebrate (feeding on invertebrates); VertFishScav (feeding on vertebrates, fish and carrion); Omnivore | categorical |
Foraging stratum | Ground; Understory; Midstorey; Canopy; Air; Water | Continuous |
Land-Cover Types | PC1 | PC2 | PC3 |
---|---|---|---|
Woodland | 0.638 | 0.059 | 0.007 |
Shrubland | 0.028 | 0.298 | −0.300 |
Built-up area | −0.486 | 0.051 | −0.259 |
Grassland | −0.127 | −0.099 | 0.848 |
Water bodies | −0.281 | 0.573 | −0.069 |
Cultivated land | −0.491 | −0.437 | −0.032 |
Bare land | −0.143 | 0.614 | 0.345 |
Proportion of variance (%) | 0.343 | 0.192 | 0.153 |
Cumulative proportion (%) | 0.343 | 0.534 | 0.687 |
Explanatory Variables | Models for | |||||
---|---|---|---|---|---|---|
Richness | Abundance | Shannon | FRic | FEve | FDiv | |
PC1 | −0.08 (0.08) *** | −0.16 (0.02) *** | −0.05 (0.01) *** | −0.05 (0.10) *** | 0.01 (0.00) * | 0.00 (0.00) |
PC2 | 0.03 (0.02) | 0.05 (0.04) | 0.01 (0.01) | 0.02 (0.01) | 0.00 (0.01) | 0.00 (0.01) |
PC3 | 0.04 (0.02) | 0.03 (0.03) | 0.01 (0.02) | 0.01 (0.01) | −0.02 (0.01) * | 0.00 (0.02) |
LD | 0.01 (0.01) | 0.05 (0.05) | −0.00 (0.01) | 0.01 (0.01) | −0.00 (0.00) | −0.00 (0.01) |
Spring | −0.01 (0.06) | −0.34 (0.11) ** | 0.05 (0.02) * | 0.07 (0.04) | 0.02 (0.02) | −0.05 (0.01) *** |
Summer | −0.12 (0.06) * | −0.48 (0.11) *** | 0.02 (0.02) | 0.14 (0.04) ** | 0.06 (0.02) *** | −0.09 (0.01) *** |
Winter | −0.38 (0.07) *** | −0.45 (0.11) *** | −0.14 (0.02) *** | −0.22 (0.05) *** | −0.03 (0.02) | −0.02 (0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhao, S.; Yang, X.; Tian, J.; Wang, X.; Chen, D.; Yu, Y.; Shi, J.; Cui, P.; Li, C. Effects of Land Cover on the Taxonomic and Functional Diversity of the Bird Communities on an Urban Subtropical Mountain. Diversity 2024, 16, 107. https://doi.org/10.3390/d16020107
Zhang W, Zhao S, Yang X, Tian J, Wang X, Chen D, Yu Y, Shi J, Cui P, Li C. Effects of Land Cover on the Taxonomic and Functional Diversity of the Bird Communities on an Urban Subtropical Mountain. Diversity. 2024; 16(2):107. https://doi.org/10.3390/d16020107
Chicago/Turabian StyleZhang, Wenwen, Shengjun Zhao, Xiao Yang, Jing Tian, Xue Wang, Ding Chen, Yuan Yu, Jie Shi, Peng Cui, and Chunlin Li. 2024. "Effects of Land Cover on the Taxonomic and Functional Diversity of the Bird Communities on an Urban Subtropical Mountain" Diversity 16, no. 2: 107. https://doi.org/10.3390/d16020107