Biodiversity of Marine Interstitial Ciliates in the Intertidal Zone of the White Sea: A Dataset from the Chernaya River Estuary, Kandalaksha Gulf
Abstract
:1. Summary
2. Data Description
2.1. Dataset Description
2.2. Figures, Tables and Schemes
3. Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lynn, D.H. The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature, 3rd ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 1–605. [Google Scholar]
- Burkovsky, I.V.; Mazei, Y.A. Complexity of ecological systems (the case of marine ciliate community). Russ. J. Ecosyst. Ecol. 2016, 1, 1–14. [Google Scholar] [CrossRef]
- Musat, N.; Werner, U.; Knittel, K.; Kolb, S.; Dodenhof, T.; van Beusekom, J.E.E.; de Beer, D.; Dubilier, N.; Amann, R. Microbial Community Structure of Sandy Intertidal Sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Syst. Appl. Microbiol. 2006, 29, 333–348. [Google Scholar] [CrossRef] [PubMed]
- Wickham, S.A.; Gieseke, A.; Berninger, U. Benthic Ciliate Identification and Enumeration: An Improved Methodology and Its Application. Aquat. Microb. Ecol. 2000, 22, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Hamels, I.; Muylaert, K.; Sabbe, K.; Vyverman, W. Contrasting Dynamics of Ciliate Communities in Sandy and Silty Sediments of an Estuarine Intertidal Flat. Eur. J. Protistol. 2005, 41, 241–250. [Google Scholar] [CrossRef]
- Burkovsky, I.; Mazei, Y. Long-Term Dynamics of Marine Interstitial Ciliate Community. Protistology 2010, 6, 147–172. [Google Scholar]
- Burkovsky, I.V.; Mazei, Y.A. 21-Year Dynamics of Marine Benthic Ciliate Community in the White Sea Intertidal Flat: Gradual or Discrete? Russ. J. Ecosyst. Ecol. 2017, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Azovsky, A.; Saburova, M.; Tikhonenkov, D.; Khazanova, K.; Esaulov, A.; Mazei, Y. Composition, Diversity and Distribution of Microbenthos across the Intertidal Zones of Ryazhkov Island (the White Sea). Eur. J. Protistol. 2013, 49, 500–515. [Google Scholar] [CrossRef] [PubMed]
- Azovsky, A.; Chertoprud, E.; Garlitska, L.; Mazei, Y.; Tikhonenkov, D. Does Size Really Matter in Biogeography? Patterns and Drivers of Global Distribution of Marine Micro- and Meiofauna. J. Biogeogr. 2020, 47, 1180–1192. [Google Scholar] [CrossRef]
- Azovsky, A.; Mazei, Y.A.; Saburova, M.; Sapozhnikov, P. Patterns in diversity and composition of microbenthos of subarctic intertidal beaches with different morphodynamics. Mar. Ecol. Prog. Ser. 2020, 648, 19–38. [Google Scholar] [CrossRef]
- Azovsky, A.I.; Mazei, Y.A. Ciliates of coarse ground on the northeastern Black Sea coast. Zool. Zhurnal 2003, 82, 899–912. [Google Scholar]
- Azovsky, A.I.; Mazei, Y.A. Distribution and community structure of benthic ciliates in the north-eastern part of the Black Sea. Protistology 2005, 4, 83–90. [Google Scholar]
- Azovsky, A.I.; Mazei, Y.A. New data on benthic ciliates of the Pechora River shoal and analysis of the Barents Sea ciliate fauna. Zool. Zhurnal 2007, 86, 387–402. [Google Scholar]
- Azovsky, A.I.; Mazei, Y.A. Structure of Subtidal and Intertidal Communities of Psammophilous Ciliates of the Pechora Sea. Oceanology 2007, 47, 60–67. [Google Scholar] [CrossRef]
- Azovsky, A.I.; Mazei, Y.A. Do Microbes Have Macroecology? Large-Scale Patterns in the Diversity and Distribution of Marine Benthic Ciliates. Glob. Ecol. Biogeogr. 2013, 22, 163–172. [Google Scholar] [CrossRef]
- Azovsky, A.; Mazei, Y. Diversity and Distribution of Free-Living Ciliates from the High-Arctic Kara Sea Sediments. Protist 2018, 169, 141–157. [Google Scholar] [CrossRef]
- Du, Y.; Xu, K.; Warren, A.; Lei, Y.; Dai, R. Benthic Ciliate and Meiofaunal Communities in Two Contrasting Habitats of an Intertidal Estuarine Wetland. J. Sea Res. 2012, 70, 50–63. [Google Scholar] [CrossRef]
- Lei, Y.-L.; Stumm, K.; Wickham, S.A.; Berninger, U.-G. Distributions and Biomass of Benthic Ciliates, Foraminifera and Amoeboid Protists in Marine, Brackish, and Freshwater Sediments. J. Eukaryot. Microbiol. 2014, 61, 493–508. [Google Scholar] [CrossRef]
- Huang, P.; Zhao, F.; Xu, K. Complementary DNA Sequencing (CDNA): An Effective Approach for Assessing the Diversity and Distribution of Marine Benthic Ciliates along Hydrographic Gradients. J. Oceanol. Limnol. 2021, 39, 208–222. [Google Scholar] [CrossRef]
- Tarragô, L.D.; Ferreira, P.M.A.; Utz, L.R.P. Benthic Marine Ciliate Assemblages from Southern Brazil and Their Relationship with Seasonality and Urbanization Level. Diversity 2020, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Fan, X.; Warren, A.; Zhang, L.; Xu, H. Functional Diversity of Benthic Ciliate Communities in Response to Environmental Gradients in a Wetland of Yangtze Estuary, China. Mar. Pollut. Bull. 2018, 127, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Soininen, J. Spatial Patterns of Functional Diversity and Composition in Marine Benthic Ciliates along the Coast of China. Mar. Ecol. Prog. Ser. 2019, 627, 49–60. [Google Scholar] [CrossRef]
- Xu, Y.; Soininen, J.; Zhang, S.; Fan, X. Disentangling the Relative Roles of Natural and Anthropogenic-Induced Stressors in Shaping Benthic Ciliate Diversity in a Heavily Disturbed Bay. Sci. Total Environ. 2021, 801, 149683. [Google Scholar] [CrossRef]
- Xu, Y.; Stoeck, T.; Forster, D.; Ma, Z.; Zhang, L.; Fan, X. Environmental Status Assessment Using Biological Traits Analyses and Functional Diversity Indices of Benthic Ciliate Communities. Mar. Pollut. Bull. 2018, 131, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, X.; Soetaert, K.; Xu, Y. The Relative Roles of Multiple Drivers on Benthic Ciliate Communities in an Intertidal Zone. Mar. Pollut. Bull. 2023, 187, 114510. [Google Scholar] [CrossRef]
- Azovsky, A. Colonization of Sand “Islands” by Psammophilous Ciliates: The Effect of Microhabitat Size and Stage of Succession. Oikos 1988, 51, 48–56. [Google Scholar] [CrossRef]
- Burkovsky, I.V. Quantitative data on vertical distribution of psammophilic infusoria in the Velikaya Salma (Kandalaksha Bay, the White Sea). Zool. Zhurnal 1968, 47, 1407–1410. [Google Scholar]
- Burkovskii, I.V.; Mazei, Y.A. A Study of Ciliate Colonization of Unpopulated Substrates of an Estuary in the White Sea. Oceanology 2001, 41, 845–852. [Google Scholar]
- Burkovskii, I.V.; Mazei, Y.A. Ciliate community structure in the zone of mixing sea and river waters. Zool. Zhurnal 2001, 80, 267–268. [Google Scholar]
- Burkovsky, I.V.; Mazei, Y.A. Changes in the structure of marine psammophilous ciliate communities for the time period characteristic of thousands generations. Uspekhi Sovrem. Biol. 2008, 128, 383–398. [Google Scholar]
- Burkovsky, I.V.; Mazei, Y.A. Interannual variability of seasonal succession in psammophilous ciliate community in the White Sea. Uspekhi Sovrem. Biol. 2008, 128, 591–608. [Google Scholar]
- Burkovsky, I.; Mazei, Y. Long-term changes of psammophilous ciliate populations in the White Sea. Uspekhi Sovrem. Biol. 2010, 130, 200–215. [Google Scholar]
- Burkovsky, I.V.; Mazei, Y.A.; Esaulov, A.S. Influence of the Period of Existence of a Biotope on the Formation of the Species Structure of a Marine Psammophilous Ciliate Community. Russ. J. Mar. Biol. 2011, 37, 177–184. [Google Scholar] [CrossRef]
- Burkovsky, I.V.; Mazei, Y.A.; Esaulov, A.S. The Stability of the Species Structure of the Marine Ciliate Community to Variations in Environmental Factors: The Roles of Physiological, Population, and Cenotic Mechanisms. Russ. J. Mar. Biol. 2012, 38, 43–55. [Google Scholar] [CrossRef]
- Mazei, Y.; Burkovsky, I. Vertical Structure of the Interstitial Ciliate Community in the Chernaya River Estuary (the White Sea). Protistology 2003, 3, 107–120. [Google Scholar]
- Mazei, Y.; Burkovsky, I. Species Composition of Benthic Ciliate Community in the Chernaya River Estuary (Kandalaksha Bay, White Sea) with a Total Checklist of the White Sea Benthic Ciliate Fauna. Protistology 2005, 4, 107–120. [Google Scholar]
- Mazei, Y.; Burkovsky, I.V. Patterns of Psammophilous Ciliate Community Structure along the Salinity Gradient in the Chernaya River Estuary (the Kandalaksha Gulf, the White Sea). Protistology 2006, 4, 251–268. [Google Scholar]
- Mazei, Y.; Burkovsky, I.V.; Saburova, M.A.; Polikarpov, I.; Stolyarov, A.P. Trophic Structure of Psammophilous Ciliate Community in the Chernaya River Estuary. Zool. Zhurnal 2001, 80, 1290–1291. [Google Scholar]
- Tikhonenkov, D.; Mazei, Y. Distribution of Heterotrophic Flagellates at the Littoral of Estuary of Chernaya River (Kandalaksha Bay, White Sea). Russ. J. Mar. Biol. 2006, 32, 276–283. [Google Scholar] [CrossRef]
- Tikhonenkov, D.V.; Mazei, Y.A.; Mylnikov, A.P. Species Diversity of Heterotrophic Flagellates in White Sea Littoral Sites. Eur. J. Protistol. 2006, 42, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Tikhonenkov, D.; Burkovsky, I.V.; Mazei, Y. Is There a Relation between the Distribution of Heterotrophic Flagellates and the Zonation of a Marine Intertidal Flat? Oceanology 2015, 55, 711–723. [Google Scholar] [CrossRef]
- Khlebovich, V. Some Peculiar Features of the Hydrochemical Regime and the Fauna of Mesohaline Waters. Mar. Biol. 1968, 2, 47–49. [Google Scholar] [CrossRef]
- Khlebovich, V. Aspects of Animal Evolution Related to Critical Salinity and Internal State. Mar. Biol. 1969, 2, 338–345. [Google Scholar] [CrossRef]
- Khlebovich, V. Applied Aspects of the Concept of Critical Salinity. Biol. Bull. Rev. 2015, 5, 562–567. [Google Scholar] [CrossRef]
- Burkovskii, I.V.; Mazei, Y.A. The effect of a lower salinity level on marine psammophilous ciliate community (field experiment). Zool. Zhurnal 2001, 80, 389–397. [Google Scholar]
- Saburova, M.A.; Polikarpov, I.G.; Burkovsky, I.V.; Mazei, Y.A. Marcoscale [Macroscale] distribution of interstitial microphytobenthos in the Chernaya River Estuary (Kandalaksha Bay, the White Sea). Ekol. Morya 2001, 58, 7–12. [Google Scholar]
- Mazei, Y.; Burkovsky, I. Spatial and temporal changes of psammophilous ciliate community in the White Sea estuary. Uspekhi Sovrem. Biol. 2002, 122, 183–189. [Google Scholar]
- Mazei, Y.; Burkovsky, I.V.; Stolyarov, A.P. Salinity as a factor of forming ciliate community (Colonization Experiments). Zool. Zhurnal 2002, 81, 387–393. [Google Scholar]
- Udalov, A.A.; Burkovskii, I.V.; Mokievskii, V.O.; Stolyarov, A.P.; Mazei, Y.A.; Saburova, M.A.; Chertoprud, M.V.; Chertoprud, E.S.; Il’inskii, V.V.; Kolobov, M.Y.; et al. Changes in the general characteristics of micro-, meio-, and macrobenthos along the salinity gradient in the White Sea estuary. Oceanology 2004, 44, 514–525. [Google Scholar]
- Telesh, I.; Khlebovich, V. Principal Processes within the Estuarine Salinity Gradient: A Review. Mar. Pollut. Bull. 2010, 61, 149–155. [Google Scholar] [CrossRef]
- Telesh, I.; Schubert, H.; Skarlato, S. Revisiting Remane’s Concept: Evidence for High Plankton Diversity and a Protistan Species Maximum in the Horohalinicum of the Baltic Sea. Mar. Ecol. Prog. Ser. 2011, 421, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Telesh, I.; Schubert, H.; Skarlato, S. Life in the Salinity Gradient: Discovering Mechanisms behind a New Biodiversity Pattern. Estuar. Coast. Shelf Sci. 2013, 135, 317–327. [Google Scholar] [CrossRef]
- Telesh, I.; Schubert, H.; Skarlato, S. Size, Seasonality, or Salinity: What Drives the Protistan Species Maximum in the Horohalinicum? Estuar. Coast. Shelf Sci. 2015, 161, 102–111. [Google Scholar] [CrossRef]
- Tikhonenkov, D.V.; Mazei, Y.A. Distribution of benthic heterotrophic flagellates along salinity gradient: Correlation between active and cryptic species diversity in the White Sea estuary. Uspekhi Sovrem. Biol. 2013, 133, 178–190. [Google Scholar]
- Uhlig, G. Eine einfache Methode zur Extraktion der vagilen mesopsammalen Mikrofauna. Helgoll. Wiss. Meeresuntersuch. 1964, 11, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Foissner, W. Basic light and scanning electron microscopic methods for taxonomic studies of ciliated Protozoa. Eur. J. Protistol. 1991, 27, 313–330. [Google Scholar] [CrossRef]
- Carey, P.G. Marine Interstitial Ciliates. An Illustrated Key; Chapman and Hall: London, UK, 1992; pp. 1–351. [Google Scholar]
- Burkovsky, I.V. The Ciliates of the Mesopsammon of the Kandalaksha Gulg (White Sea). I. Acta Protozool. 1970, 7, 475–490. [Google Scholar]
- Burkovsky, I.V. The Ciliates of the Mesopsammon of the Kandalaksha Gulg (White Sea). II. Acta Protozool. 1970, 8, 47–65. [Google Scholar]
- Mazei, Y.; Gao, S.; Warren, A.; Li, L.; Li, J.; Song, W.; Esaulov, A. Reinvestigation of the Marine Ciliate Trachelocerca ditis (Wright, 1982) Foissner and Dragesco, 1996 (Ciliophora, Karyorelictea) from the Yellow Sea and an Assessment of Its Phylogenetic Position Inferred from the Small Subunit RRNA Gene Sequence. Acta Protozool. 2009, 48, 213–221. [Google Scholar]
- Xu, Y.; Esaulov, A.; Lin, X.; Mazei, Y.; Hu, X.; Al-Rasheid, K.A.S.; Warren, A. Morphological Studies on Five Trachelocercids from the Yellow Sea Coast of China, with a Description of Tracheloraphis huangi spec. nov. (Ciliophora, Karyorelictea). Acta Protozool. 2011, 50, 205–218. [Google Scholar]
Column Label | Column Description |
---|---|
eventID | An identifier for the set of information associated with an event. |
occurrenceID | An identifier for the occurrence (as opposed to a particular digital record of the occurrence). |
basisOfRecord | The specific nature of the data recorded: LivingSpecimen. |
eventDate | The date when material from the trap was collected or the range of dates during which the trap collected material. |
Kingdom | The full scientific name of the Kingdom in which the taxon is classified. |
scientificName | The full scientific name, including the genus name and the lowest level of taxonomic rank with the authority. |
Family | The full scientific name of the Family in which the taxon is classified. |
Class | The full scientific name of the Class in which the taxon is classified. |
taxonRank | The taxonomic rank of the most specific name in the scientific name. |
decimalLatitude | The geographic latitude of location in decimal degrees. |
decimalLongitude | The geographic longitude of location in decimal degrees. |
countryCode | The standard code for the country in which the location is found. |
individualCount | The number of individuals present at the time of the occurrence. |
organismQuantity | A number or enumeration value for the quantity of organisms. |
organismQuantityType | The type of quantification system used for the quantity of organisms. |
Class | Number of Families | Number of Species | Number of Individuals |
---|---|---|---|
Cyrtophoria Fauré-Fremiet in Corliss, 1956 | 3 | 4 | 81 |
Gymnostomatea Bütschli, 1889 | 10 | 26 | 4807 |
Heterotrichea Stein 1859 | 4 | 8 | 544 |
Hypotrichea Stein 1859 | 12 | 27 | 7116 |
Karyorelictea Corliss 1974 | 5 | 16 | 24,868 |
Kinetofragminophora de Puytorac et al. 1974 | 2 | 3 | 616 |
Litostomatea Small et Lynn 1981 | 1 | 1 | 1 |
Oligohymenophorea de Puytorac et al. 1974 | 11 | 17 | 19,260 |
Oligotrichea Bztschli 1887 | 2 | 2 | 2282 |
Prostomatea Schewiakoff 1896 | 3 | 5 | 4900 |
Total | 53 | 109 | 64,475 |
Species | Stations | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||||
ab. | occ. | ab. | occ. | ab. | occ. | ab. | occ. | ab. | occ. | |
Apotrachelocerca arenicola (Kahl, 1933) | 645 | 35 | 74 | 18 | 217 | 16 | 2 | 1 | 1 | 1 |
Anigsteinia clarissimum Kahl, 1928 | 39 | 22 | 63 | 16 | 63 | 15 | 68 | 22 | 72 | 12 |
Cardiostomatella vermiformis (Kahl, 1928) Corliss, 1960 | 438 | 34 | 232 | 31 | 460 | 24 | 16 | 7 | 4 | 2 |
Coleps tesselatus Kahl, 1930 | 3315 | 35 | 91 | 18 | 214 | 30 | 12 | 7 | 0 | 0 |
Cyclidium fuscum Kahl, 1928 | 186 | 18 | 474 | 28 | 636 | 25 | 678 | 28 | 606 | 18 |
Cyrtohymena marina (Kahl, 1932) Foissner, 1989 | 0 | 0 | 7 | 4 | 66 | 11 | 66 | 10 | 94 | 12 |
Didinium balbiani (Fabre-Domergue, 1888) Kahl, 1930 | 1366 | 33 | 237 | 26 | 237 | 27 | 48 | 12 | 36 | 7 |
Diophrys scutum (Dujardin, 1841) Kahl, 1932 | 218 | 34 | 42 | 13 | 549 | 21 | 15 | 7 | 33 | 6 |
Discocephalus rotatorius Ehrenberg, 1829 | 814 | 34 | 119 | 14 | 6 | 2 | 0 | 0 | 0 | 0 |
Enchelyodon Claparède & Lachmann, 1859 | 181 | 24 | 157 | 24 | 146 | 25 | 170 | 24 | 133 | 19 |
Frontonia tchibisovae Burkovsky, 1970 | 31 | 13 | 23 | 3 | 246 | 26 | 79 | 9 | 6 | 4 |
Geleia fossata (Kahl, 1933) Foissner, 1998 | 324 | 34 | 20 | 7 | 1 | 1 | 0 | 0 | 0 | 0 |
Glaucoma pyriformis (Ehrenberg) Schewiakoff | 0 | 0 | 4 | 3 | 97 | 14 | 102 | 19 | 12 | 7 |
Histobalantium majus Kahl, 1931 | 470 | 30 | 20 | 10 | 1 | 1 | 1 | 2 | 0 | 0 |
Histobalantium marinum Kahl, 1933 | 1976 | 35 | 340 | 31 | 139 | 22 | 18 | 10 | 12 | 5 |
Lacrymaria affinis Bock, 1952 | 278 | 34 | 85 | 22 | 38 | 13 | 51 | 16 | 62 | 13 |
Lacrymaria cohnii Kent, 1881 | 35 | 14 | 5 | 4 | 1 | 1 | 36 | 14 | 35 | 12 |
Lacrymaria conifera Burkovsky, 1970 | 130 | 19 | 23 | 9 | 21 | 8 | 16 | 8 | 39 | 11 |
Lacrymaria coronata Claparède & Lachmann, 1859 | 61 | 12 | 23 | 13 | 47 | 13 | 24 | 14 | 30 | 10 |
Limnostrombidium viride (Stein, 1867) Krainer, 1995 | 1162 | 33 | 289 | 30 | 199 | 21 | 48 | 10 | 47 | 8 |
Oxytrichidae Ehrenberg 1838 | 141 | 27 | 34 | 16 | 57 | 12 | 64 | 22 | 62 | 15 |
Paraprorodon morgani (Kahl, 1930) Foissner, 1983 | 39 | 6 | 5 | 2 | 69 | 21 | 36 | 16 | 52 | 16 |
Pleuronema crassum Dujardin, 1841 | 3 | 2 | 43 | 11 | 349 | 26 | 622 | 28 | 614 | 14 |
Pleuronema marina Dujardin, 1841 | 524 | 33 | 20 | 7 | 783 | 5 | 55 | 5 | 134 | 5 |
Prorodon Ehrenberg, 1834 | 792 | 34 | 156 | 27 | 138 | 27 | 157 | 21 | 72 | 11 |
Remanella margaritifera Kahl, 1933 | 8814 | 35 | 8913 | 32 | 125 | 12 | 7 | 3 | 0 | 0 |
Sonderia vorax Kahl, 1928 | 59 | 18 | 97 | 26 | 300 | 27 | 49 | 12 | 7 | 6 |
Trachelocerca incaudata Kahl, 1933 | 1812 | 35 | 291 | 24 | 57 | 11 | 0 | 0 | 0 | 0 |
Trachelocercidae Kent 1881 | 675 | 32 | 798 | 33 | 110 | 24 | 33 | 12 | 2 | 2 |
Tracheloraphis kahli Raikov, 1962 | 470 | 30 | 20 | 10 | 1 | 1 | 1 | 2 | 0 | 0 |
Trachelostyla caudata Kahl, 1932 | 296 | 27 | 117 | 25 | 148 | 23 | 42 | 7 | 69 | 6 |
Uronema marinum Dujardin, 1841 | 3820 | 35 | 467 | 27 | 1139 | 31 | 965 | 32 | 589 | 18 |
Urosoma caudatum (Ehrenberg, 1833) Berger, 1999 | 0 | 0 | 0 | 0 | 45 | 8 | 88 | 10 | 137 | 13 |
Urostrongylum caudatum Kahl, 1935 | 551 | 33 | 293 | 29 | 30 | 6 | 4 | 5 | 4 | 3 |
Factor | Stations | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Granulometric composition of sediments. Fraction (%): | |||||
>1.0 mm | 2.8 | 15.2 | 5.7 | 4.9 | 4.5 |
0.50–1.00 mm | 16.3 | 16.8 | 18.4 | 12.9 | 6.6 |
0.25–0.50 mm | 46.2 | 29.3 | 53.6 | 37.3 | 38.5 |
0.10–0.25 mm | 18.8 | 12.9 | 10.5 | 16.5 | 20.3 |
<0.10 mm | 15.9 | 25.8 | 11.8 | 28.4 | 30.1 |
Amount of suspended organic matter in the sediment (% from sediment weight) | 0.3 | 0.8 | 0.5 | 0.9 | 1.0 |
Volume of water spaces in the sediment | 44.7 | 41.6 | 46.9 | 41.6 | 41.2 |
Density of the sediment (% of allevropelite < 0.1 mm) | 15.9 | 25.9 | 11.8 | 28.4 | 30.1 |
Water salinity, ‰ | |||||
1998, average | 13.0 | 10.0 | 5.7 | 3.8 | 1.0 |
amplitude | 3–20 | 2–18 | 0–15 | 0–13 | 0–8 |
1999, average | 17.1 | 16.6 | 12.2 | 9.9 | 3.2 |
amplitude | 14–22 | 10–20 | 8–18 | 5–15 | 0–10 |
2000, average | 13.7 | 11.5 | 7.4 | 5.8 | 1.8 |
amplitude | 8.3–21 | 2.5–18.9 | 0.6–16.6 | 0–13.1 | 0–7.1 |
average for 1998–2000 | 14.6 | 12.7 | 8.4 | 6.5 | 2.0 |
Coefficient of variation, % | 15 | 27.3 | 40 | 48 | 55.5 |
pH on the surface of the sediment | |||||
1998, average | 7.4 | 6.8 | 7.0 | 6.7 | 6.3 |
1999, average | 7.8 | 7.4 | 7.2 | 6.9 | 6.3 |
2000, average | 8.2 | 8.1 | 7.8 | 7.7 | 7.4 |
Coefficient of variation, % | 5.4 | 8.5 | 5.6 | 7.8 | 9.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Esaulov, A.S.; Burkovsky, I.V.; Saldaev, D.A.; Mazei, Y.A. Biodiversity of Marine Interstitial Ciliates in the Intertidal Zone of the White Sea: A Dataset from the Chernaya River Estuary, Kandalaksha Gulf. Diversity 2023, 15, 873. https://doi.org/10.3390/d15070873
Li X, Esaulov AS, Burkovsky IV, Saldaev DA, Mazei YA. Biodiversity of Marine Interstitial Ciliates in the Intertidal Zone of the White Sea: A Dataset from the Chernaya River Estuary, Kandalaksha Gulf. Diversity. 2023; 15(7):873. https://doi.org/10.3390/d15070873
Chicago/Turabian StyleLi, Xiaolei, Anton S. Esaulov, Igor V. Burkovsky, Damir A. Saldaev, and Yuri A. Mazei. 2023. "Biodiversity of Marine Interstitial Ciliates in the Intertidal Zone of the White Sea: A Dataset from the Chernaya River Estuary, Kandalaksha Gulf" Diversity 15, no. 7: 873. https://doi.org/10.3390/d15070873
APA StyleLi, X., Esaulov, A. S., Burkovsky, I. V., Saldaev, D. A., & Mazei, Y. A. (2023). Biodiversity of Marine Interstitial Ciliates in the Intertidal Zone of the White Sea: A Dataset from the Chernaya River Estuary, Kandalaksha Gulf. Diversity, 15(7), 873. https://doi.org/10.3390/d15070873